
Untangling DSCP, TOS and ECN bits in the
kernel

Guillaume Nault
Red Hat

gnault@redhat.com

Linux Plumbers Conference
September 24, 2021

Why this talk?

I TOS handling is inconsistent in the kernel.

I Regressions introduced regularly.

I Several corner cases still to be fixed.

I New features proposed upstream with bad or dangerous
implementation.

Evolution of the TOS field for IPv4

+-+

|Version| IHL |Type of Service| Total Length |

+-+

The Type of Service field is 1 byte long. Its definition has varied
over time:

RFC 791 (1981): pppTTTrr

RFC 1122 (1989): pppTTTTT

RFC 1349 (1992): pppTTTTr

RFC 2474 (1998): TTTTTTrr (introduction of DSCP)

RFC 3168 (2001): TTTTTTee (introduction of ECN)

p: precedence bits
T: bits usable for encoding the Type of Service
r: reserved bits

e: ECN bits

Evolution of the TOS field for IPv6
For IPv6 too the definition has changed:

+-+

|Version| Prio. | Flow Label |

+-+

+-+

|Version| Traffic Class | Flow Label |

+-+

RFC 1883 (1995): TTTT

RFC 2460 (1998): TTTTTTTT

RFC 2474 (1998): TTTTTTrr (introduction of DSCP)

RFC 3168 (2001): TTTTTTee (introduction of ECN)

RFC 8200 (2017): TTTTTTee (follows RFC 2474 and RFC 3168)

T: bits usable for encoding the Type of Service
r: reserved bits

e: ECN bits

Linux kernel implementation

The situation is a bit messy...

I IPv4 ignores ECN bits when matching TOS (apart from some
corner cases that need to be fixed).

I IPv6 takes ECN bits into account when matching TOS (so
ECT(0) and ECT(1) packets might be treated differently).

I Most IPv4 FIB lookups don’t use the high order bits of the
TOS (core routing, ip rules) but not all (nft fib ipv4).

I IPv6 takes all high order bits into account when matching
TOS.

I The configuration paths accepts unusable TOS values (so one
can configure a TOS that actually can’t ever match).

TOS macros used by IPv4

TOS is generally stored as u8 and includes the ECN bits. IPv4
often uses the following macros when handling TOS:

RT TOS() : masks the old precedence bits and the MBZ one:
000xxxx0 (RFC 1349 style).

IPTOS RT MASK : like RT TOS but also masks both ECN bits:
000xxx00 (RFC 791 style).

TOS macros used by IPv6

None... but RT TOS() starts spreading into IPv6 code, where it
doesn’t make sense :(.

Practical consequences

Past problems:

I ip route get returning a different route than what real
packets would follow.

I Regression (behaviour changes) in VXLAN due to unclear
TOS semantic.

I Wrong source address selection.

Current problems:

I Inconsistent handling of the old preference bits.

I Different behaviour between IPv4 and IPv6 (but people should
be used to that :-().

I Risky patches posted upstream to make the high order bits
usable (blindly modifying the IPv4 TOS macros).

IPv4: edge cases with ip route

I TOS covering ECN bits are accepted, but no packet will ever
match:

ip route add 192.0.2.0/24 tos 1 dev eth0

ping -Q 1 192.0.2.1

ping: connect: Network is unreachable

I Good old RFC 791 TOS work, but also match packets with
high order DSCP bits set:

ip route add 192.0.2.0/24 tos 4 dev eth0

ping -Q 0xe4 192.0.2.1

[...]

29 packets transmitted, 29 received, 0% packet loss

I TOS covering high order DSCP bits are accepted, but no
packet will ever match:

ip route add 192.0.2.0/24 tos 0xe4 dev eth0

ping -Q 0xe4 192.0.2.1

ping: connect: Network is unreachable

IPv4: edge cases with ip rule

[Examples assume ip route add 192.0.2.0/24 table 100 dev eth0]

I TOS covering ECN bit 0 are rejected:
ip rule add tos 1 table 100

Error: Invalid tos.

I TOS covering ECN bit 1 are accepted, but no packet will ever
match:

ip rule add tos 2 table 100

ping -Q 2 192.0.2.1

ping: connect: Network is unreachable

I Good old RFC 791 TOS work, but also match packet with
high order DSCP bits set:

ip rule add tos 4 table 100

ping -Q 0xe4 192.0.2.1

[...]

26 packets transmitted, 26 received, 0% packet loss

I TOS covering high order DSCP bits are rejected:
ip rule add tos 0xe4 table 100

Error: Invalid tos.

What about IPv6?

ip route : tos parameter ignored for IPv6.

ip rule : any TOS accepted (between 0 to 0xff), no mask
applied when matching packets: what you type is
really what you get.
Fine, but do we really want to let the admin mess
with ECN?

What can we do?

Obvious steps:
I Fix remaining bugs:

I IPv6: remove code that masks high order DSCP bits (RT TOS).
I IPv4: mask ECN bits where this is missing.

I Remove IPTOS TOS MASK and derived macros (RT TOS(),
IPTOS TOS()): they generally don’t make sense.

Long term:

I Define the expected behaviours:
→ Should we consider the result of any of the previous ip

commands as bug?

I Rework internal code to avoid introducing more bugs or
inconsistent behaviours.

Possible long-term improvements

I Option 1: define a dscp t type:
I Ensure ECN bits are cleared.
I Sparse could warn about incorrect uses.

or
I Option 2: add a bit-mask for TOS configuration:

I TOS values (as read from packets) would remain 8-bits
integers and contain the ECN bits.

I TOS configuration would always have a value and a mask.
I TOS mask might allow covering the ECN bits (for

compatibility with current IPv6 behaviour).

Option 1: define a dscp t type

Something like:

typedef u8 b i t w i s e d s c p t ;

#def ine INET DSCP MASK 0 x f c

s t a t i c i n l i n e d s c p t dscp f rom u8 (u8 to s)
{

re tu rn (f o r c e d s c p t) (t o s & INET DSCP MASK) ;
}

s t a t i c i n l i n e u8 d s cp t o u8 (d s c p t dscp)
{

re tu rn (f o r c e u8) dscp ;
}

Option 1: drawbacks of the dscp t type approach

I Code churn (lots of code and structures to modify).

I Sparse warnings can go unnoticed (maybe patchwork can
help).

I For IPv4, should the mask cover all DSCP bits or just the
original 3 TOS bits?

I What about IPv6? Clear the ECN bits or not? If not, how to
handle code that works on both IPv4 and IPv6?

Option 2: Add a bit-mask for TOS configuration

I New type for storing TOS configuration (TOS value + mask):
typedef u16 bitwise tos cfg t;

I Allow optional TOS mask attribute every time we configure a
TOS:

ip rule add tos 0xf4/0xfc table 100

I Allows using the whole DSCP range.

I Possible different default TOS mask depending on context
and expected behaviour.

Option 2: drawbacks of the bit-mask approach

I Not as mechanical as option 1.
I Edge cases:

I Packets may match different configured TOS:
ip route add 192.168.0.2/24 tos 0x10/0x30 ...

ip route add 192.168.0.2/24 tos 0x40/0xc0 ...

Which route should be selected for a packet with TOS 0x50?
First match wins? Use arbitrary rule (like compare TOS masks
as integer and select the biggest one)?

I Null TOS with non-null mask, like 0x00/0x04 (or
0x00/$default mask)? Wild card or not?

I Is it worth the pain (is that really going to be useful to
anyone)?

Conclusion

What we would get in an ideal world:

I Full DSCP support for IPV4.

I TOS shouldn’t break ECN.

I Same behaviour for IPv4 and IPv6.

What we can realistically do:

I Fix existing bugs (IPv4 not masking ECN bits, IPv6 masking
DSCP bits).

I Remove uses of IPTOS TOS MASK and derived macros like
RT TOS() so that people stop copy/pasting them.

I Clearly define the expected effect of TOS.

I Rework existing code so that we won’t re-introduce TOS
bugs:

Option 1 : with Sparse (dscp t).

Option 2 : with a TOS mask (tos cfg t).

Discussions

Questions?

Comments?

