
Proprietary + Confidential

BPF Map Tracing
Hot updates of stateful
programs
20 Sep 2021

1

Proprietary + Confidential

This presentation is both an RFC and a status
update.

The ideas presented here have been
prototyped and could be sent upstream
soon.

There are open questions I would like
feedback on.

2

Proprietary + Confidential
Table of Contents

Motivation

Abstract model

Proposed solution

Open questions

Summary

01

02

03

04

05

3

Proprietary + Confidential

Motivation
An un-upgradable
stateful program

01

4

Proprietary + Confidential

ebpf_dynencap

ebpf_dynencap is a set of BPF programs developed at Google. At the

highest level, it allows applications to dynamically specify what src

and dst IPs to use when encapsulating the packets on a socket.

To opt in a socket, programs invoke a cgroup/setsockopt program. A

TC program performs the encapsulation.

It uses three maps.

5

Proprietary + Confidential

ebpf_dynencap

dynencap_map is an SK_STORAGE_MAP that records the IPs to use

when encapsulating the packets from a socket.

It is populated a cgroup/setsockopt program, via

bpf_sk_storage_get().

It is consumed by the TC program.

Losing the data in this map means that packets do not get

encapsulated, breaking the contract with usermode.

6

Proprietary + Confidential

ebpf_dynencap

syn_encap_map is an LRU_HASH. It stores the outer IPs of

encapsulated SYN packets. The SYNACK response to such an

encapsulated SYN is encapsulated with the same IPs.

It is mutated by a cgroup_skb/ingress program, via

bpf_map_update_elem() and bpf_map_delete_elem().

It is consumed by the TC program.

Losing the data in this map causes the TC program to drop the

SYNACK. This is not ideal, but not fatal.

7

Proprietary + Confidential

ebpf_dynencap

reflection_status is an PERCPU_HASH which simply counts the

number of errors of a certain type.

It is mutated by a cgroup_skb/ingress, via bpf_map_lookup_elem() and

bpf_map_update_elem().

It is consumed by a userspace app.

It is informational, not critical for policy enforcement.

8

Proprietary + Confidential

ebpf_dynencap

Symbol name Type Impact of state loss Mutation helpers

dynencap_map SK_STORAGE contract breaks sk_storage_get()

syn_encap_map LRU_HASH performance /
availability hit

update_elem(),
delete_elem()

reflection_status PERCPU_HASH doesn’t matter lookup_elem(),
update_elem()

9

Proprietary + Confidential

ebpf_dynencap

Symbol name Type Impact of state loss Mutation helpers

dynencap_map SK_STORAGE contract breaks sk_storage_get()

syn_encap_map LRU_HASH performance /
availability hit

update_elem(),
delete_elem()

reflection_status PERCPU_HASH doesn’t matter lookup_elem(),
update_elem()

10

Proprietary + Confidential

ebpf_dynencap simplified

Let’s consider how we might upgrade the critical subset of dynencap.

We have two programs, each attached to an event, and one map.

11

Proprietary + Confidential

ebpf_dynencap simplified

Suppose we upgrade by loading a new copy of each program and

map. We do a bulk copy of the data in dynencap_map, then swap

each program.

By pure chance, an application does a setsockopt() in the middle of

this operation, after we’ve finished the bulk copy of dynencap_map,

but before we’ve swapped the programs.

We then swap our programs, but dynencap_map is missing the entry

for that socket.

Oops! We’ve broken our contract with usermode.

Upgrade begins

Upgrade ends

12

Proprietary + Confidential

Ramifications

First-order problems:

● We cannot upgrade our programs.

● We cannot roll back our agent arbitrarily, since it would need

to know how to speak to newer programs.

Second-order problems:

● Before rolling out new programs, we need to roll out a new

agent which can speak to them. This allows us to roll back our

agent, but it adds latency to our releases.

● Our developers need to keep all of this complexity in their

heads.

13

Proprietary + Confidential

Abstract model
The problem, and a
solution

02

14

Proprietary + Confidential

A model application

Let’s consider how to upgrade this simplified program set.

It is comprised of two programs, each attached to an event, and one

map.

The final program makes a decision using the state in the map.

Let’s upgrade it.

15

Proprietary + Confidential

Step 1: Load the new version

First we can load the new version of the program set.

Since we haven’t attached our programs to any events, this has no

effect.

16

Proprietary + Confidential

Step 2: Attach a copy-on-write handler to
the map

Attach a new kind of tracing program to the old map. Any updates to

the map invoke this program.

In this case, the program migrates the format of the data from old to

new, then writes it to the new map.

17

Proprietary + Confidential

Step 3: Perform a bulk transfer of state

Now we can copy all of the state from the old map to the new one.

Suppose that the bulk transfer program is in the middle of migrating

the last element of a large array when an earlier element is updated.

Normally this change would not propagate to the new map. Because

of the copy-on-write handler, the change does propagate.

To prevent the copy-on-write handler and bulk-transfer programs

from clashing, we can use a spinlock.

18

Proprietary + Confidential

Step 4: Swap programs one by one

At this point we can start swapping programs one by one.

We have to do it in an order determined by the programs’ data

dependencies (simple topological sort).

If prog 0 fires while we’re in this state, prog 1’ has all of the state it

needs due to either the copy-on-write or the bulk transfer

programs.

19

Proprietary + Confidential

Step 4: Swap programs one by one

At this point we’re essentially done. All that remains is to unload the

migration and old programs.

20

Proprietary + Confidential

Step 5: Unload migration programs

We have upgraded our stateful application without breaking a data

dependency at any point in time, or making any assumptions about

the nature of the change to the map.

The map’s capacity, type, and data layout could all change arbitrarily.

21

Proprietary + Confidential

Proposed solution
Source code

03

22

Proprietary + Confidential

A toy program

uint32_t collatz(uint32_t x)
{
 return x % 2 ? x * 3 + 1 : x / 2;
}

SEC("map_trace/traced_map/UPDATE_ELEM")
int tracer(struct bpf_map_trace_ctx__update_elem *ctx)
{
 uint32_t key = 0, val = 0;

 if (bpf_probe_read(&key, sizeof(key), ctx->key))
 return 1;
 if (bpf_probe_read(&val, sizeof(val), ctx->value))
 return 1;
 val = collatz(val);
 bpf_map_update_elem(&tracer_map, &key, &val,
/*flags=*/0);
 return 0;
}

23

Proprietary + Confidential

Program context

struct bpf_map_trace_ctx__update_elem {
 __bpf_md_ptr(void *, key);
 __bpf_md_ptr(void *, value);
 u64 flags;
};

struct bpf_map_trace_ctx__delete_elem {
__bpf_md_ptr(void *, key);
};

24

Proprietary + Confidential

Link API changes

enum bpf_map_trace_type {
 BPF_MAP_TRACE_UPDATE_ELEM = 0,
 BPF_MAP_TRACE_DELETE_ELEM = 1,
 MAX_BPF_MAP_TRACE_TYPE,
};

struct bpf_map_trace_link_info {
 __u32 map_fd;
 enum bpf_map_trace_type trace_type;
};

struct { /* struct used by BPF_LINK_CREATE command */
...
 union {
 struct {
 __aligned_u64 map_trace_info;
 __u32 map_trace_info_len;
 };
...
};

25

Proprietary + Confidential

Implications

Because we can attach a list of programs to a map, and a program

can update multiple maps, updating one map can trigger a cascade

of programs and maps.

The cascade can take the form of a graph.

If this graph has a loop, we’re in trouble.

26

Proprietary + Confidential

Infinite loops - direct

/* This traces traced_map and updates it,
creating an (invalid) infinite loop. */
SEC("map_trace/traced_map/UPDATE_ELEM")
int tracer(struct bpf_map_trace_ctx__update_elem *ctx) {
 uint32_t key = 0, val = 0;
 bpf_map_update_elem(&traced_map, &key, &val, /*flags=*/0);
 return 0;
}

27

Proprietary + Confidential

Infinite loops - indirect

SEC("map_trace/map0/UPDATE_ELEM")
int tracer0(struct bpf_map_trace_ctx__update_elem *ctx) {
 uint32_t key = 0, val = 0;
 bpf_map_update_elem(&map1, &key, &val, /*flags=*/0);
 return 0;
}

/* Since this traces map1 and updates map0,
 * it forms an infinite loop with
 * tracer0. */
SEC("map_trace/map1/UPDATE_ELEM")
int tracer1(struct bpf_map_trace_ctx__update_elem *ctx) {
 uint32_t key = 0, val = 0;
 bpf_map_update_elem(&map0, &key, &val, /*flags=*/0);
 return 0;
}

28

Proprietary + Confidential

Infinite loop detection

At link creation time, we detect infinite loops with a simple depth-first search on

this graph.

def would_loop(tracing_prog, traced_map):

for each map in tracing_prog.used_maps:

if map == traced_map:

return True;

for each program attached to this map:

if (would_loop(program, traced_map)):

return True;

return False;

29

Proprietary + Confidential

struct bpf_map changes

struct bpf_map_trace_prog {
 struct list_head list;
 struct bpf_prog *prog;
 struct rcu_head rcu;
};

struct bpf_map_trace_progs {
 struct bpf_map_trace_prog __rcu progs[MAX_BPF_MAP_TRACE_TYPE];
 u32 length[MAX_BPF_MAP_TRACE_TYPE];
 struct mutex mutex; /* protects writes to progs, length */
};

struct bpf_map {
 ...
 struct bpf_map_trace_progs *trace_progs;
 ...
};

<= No mutex!

30

Proprietary + Confidential

Tracing helper functions

BPF_CALL_4(bpf_map_trace_update_elem, struct bpf_map *, map,
 void *, key, void *, value, u64, flags) {
 bpf_trace_map_update_elem(map, key, value, flags);
 return 0;
}

const struct bpf_func_proto bpf_map_trace_update_elem_proto = { .func
= bpf_map_trace_update_elem,
.ret_type = RET_VOID,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
.arg3_type = ARG_PTR_TO_MAP_VALUE,
.arg4_type = ARG_ANYTHING,
};

BPF_CALL_2(bpf_map_trace_delete_elem, struct bpf_map *, map,
 void *, key) {
 ...

31

Proprietary + Confidential

verifier changes

 /* push args onto the stack so that we can invoke the tracer after */
 for (i = 0; i < nregs; i++)
 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP,
 BPF_REG_1 + i, stack_offset - (i + 1) * reg_size_bytes);
 insn_buf[cnt++] = BPF_EMIT_CALL(BPF_CAST_CALL(map_func));
 for (i = 0; i < nregs; i++)
 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_1 + i,
 BPF_REG_FP, stack_offset - (i + 1) * reg_size_bytes);
 /* save return code from map update */
 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_0,
 stack_offset - reg_size_bytes);
 /* invoke tracing helper */
 insn_buf[cnt++] = BPF_EMIT_CALL(BPF_CAST_CALL(map_trace_func));
 /* restore return code from map update */
 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_FP,
 stack_offset - reg_size_bytes);
 *extra_stack = max_t(int, *extra_stack, nregs * reg_size_bytes);
 return cnt;

32

Proprietary + Confidential

Open questions

04

33

Proprietary + Confidential

Supporting bpf_map_lookup_elem() and
local storage

Many applications use bpf_map_lookup_elem() to get a pointer to a

map entry, then modify the entry through that pointer.

So far, our approach revolves around mechanically tracing helper

calls. This doesn’t work for pointer based updates because of

situations like this:

int* x = bpf_map_lookup_elem(...);

bpf_map_trace_lookup_elem(...);

x++; / The tracer never saw this! */

34

Proprietary + Confidential

Supporting bpf_map_lookup_elem() and
local storage

After some light discussion internally, we concluded that invoking

tracer calls at program exit time may be the best solution.

int* x = bpf_map_lookup_elem(...);

*x++;

...

bpf_map_trace_lookup_elem(x);

return 0;

This transformation would be done at the source code level to avoid

issues with register allocation.

35

Proprietary + Confidential

Verifier-inserted tracing calls

Our prototype mechanically expands each bpf_map_update_elem(),

appending a bpf_map_trace_update_elem() call right after it.

Should it be done conditionally, according to a flag in

BPF_PROG_LOAD?

Should it be done at the source code level instead of at the byte

code?

36

Proprietary + Confidential

What interesting use cases have we not
thought of?

We conceived of the map tracing facility to ease the issues around

upgrading stateful programs, and to allow these programs to couple

tightly with applications.

What else is this good for?

37

Proprietary + Confidential

Summary

05

38

Proprietary + Confidential

Summary

We hope to solve the problem of un-upgradable stateful programs by

temporarily imbuing maps with copy-on-write semantics.

A set of helper functions are defined which can invoke these

programs. They may be mechanically added to programs either in the

verifier or in source code.

Open questions:

1. How should we support pointer-based updates, e.g. local

storage?

2. Is unconditionally inserting helper calls in the verifier

acceptable?

3. What other problems might this solve?

39

Proprietary + Confidential

Thank you.

40

