
Paul E. McKenney

Software Engineer

2021 Linux Plumbers Conference: Networking & BPF Summit

Towards a BPF Memory
Model

1. What is a memory model?

2. Why is a BPF memory model necessary?

3. Which memory model for BPF?

4. Overhead of Atomic Operations

5. Should all kernel atomics be added to BPF?

6. How would a BPF memory model work?

Agenda

A memory model defines outcomes of concurrent accesses.

What is a “data race”? Certain types of concurrent accesses:
C standard: At least one write and at least one unmarked access
Linux kernel: It is complicated!
The kernel relies on compiler implementations, not the C standard

What is a Memory Model?

Linux-kernel memory model:
https://lwn.net/Articles/718628/
https://lwn.net/Articles/720550/

Compiler optimizations:
https://lwn.net/Articles/793253/
https://lwn.net/Articles/799218/

https://lwn.net/Articles/718628/
https://lwn.net/Articles/720550/
https://lwn.net/Articles/793253/
https://lwn.net/Articles/799218/

Many compiler optimizations assume sequential code:
Load tearing*, store tearing*, load fusing*, code reordering*,

invented loads*, invented stores*, store-to-load transformations,
dead-code elimination*
* Seen in the wild

All of this is in addition to what the hardware can do to your

concurrent code!

The Compiler Might Not Always Be Your Friend

Linux-kernel memory model:
https://lwn.net/Articles/718628/
https://lwn.net/Articles/720550/

Compiler optimizations:
https://lwn.net/Articles/793253/
https://lwn.net/Articles/799218/

https://lwn.net/Articles/718628/
https://lwn.net/Articles/720550/
https://lwn.net/Articles/793253/
https://lwn.net/Articles/799218/

Increasing numbers of BPF programs feature concurrency, not only with
each other and with the rest of the kernel, but also via shared memory
with userspace BPF-program components.

In addition, ordering is an issue even on x86.

Example BPF kernel control: Networking TCP congestion control

Why is a BPF Memory Model Necessary?

https://nakryiko.com/posts/libbpf-bootstrap/
https://lwn.net/Articles/811631/

https://nakryiko.com/posts/libbpf-bootstrap/
https://lwn.net/Articles/811631/

Which Memory Model for BPF?

Which Memory Model for BPF?

The Linux Kernel Memory Model

Overhead of Atomic Operations

Linux-kernel operation x86 powerpc

READ_ONCE() & WRITE_ONCE() Volatile load/store Volatile load/store

smp_load_acquire() Load then barrier() Load then lwsync

smp_store_release() barrier() then store lwsync then store

smp_rmb() and smp_wmb() barrier() lwsync

smp_mb() lock;addl to stack sync

Atomic RMW operations lock; RMW instruction sync;larx-stcx;sync

Note: barrier() emits no instructions

Overhead of Atomic Operations

Linux-kernel operation x86 powerpc

READ_ONCE() & WRITE_ONCE() Volatile load/store Volatile load/store

smp_load_acquire() Load then barrier() Load then lwsync

smp_store_release() barrier() then store lwsync then store

smp_rmb() and smp_wmb() barrier() lwsync

smp_mb() lock;addl to stack sync

Atomic RMW operations lock; RMW instruction sync;larx-stcx;sync

Note: barrier() emits no instructions, and atomics often incur cache misses

Should All Kernel Atomics Be Added
to BPF?

READ_ONCE(), WRITE_ONCE(), smp_store_release(), smp_load_acquire(), rcu_assign_pointer(),
rcu_dereference(), smp_store_mb(), smp_mb(), smp_rmb(), smp_wmb(),
smp_mb__before_atomic(), smp_mb__after_atomic(), smp_mb__after_spinlock(),
smp_mb__after_unlock_lock(), barrier(), xchg(), xchg_relaxed(), xchg_release(), xchg_acquire(),
cmpxchg(), cmpxchg_relaxed(), cmpxchg_acquire(), cmpxchg_release(), atomic_read(),
atomic_set(), atomic_read_acquire(), atomic_set_release(), atomic_add(), atomic_sub(),
atomic_inc(), atomic_dec(), atomic_add_return(), atomic_add_return_relaxed(),
atomic_add_return_acquire(), atomic_add_return_release(), atomic_fetch_add(),
atomic_fetch_add_relaxed(), atomic_fetch_add_acquire(), atomic_add_return_release(),
atomic_fetch_add(), atomic_fetch_add_relaxed(), atomic_fetch_add_acquire(),
atomic_fetch_add_release(), atomic_inc_return(), atomic_inc_return_relaxed(), ...

{,raw_}spin_lock{,_bh,_irq,_irqsave}(), {,raw_}spin_unlock{,_bh,_irq,_irqrestore}(),
{,raw_}spin_trylock{,_bh,_irq,_irqsave}(), spin_is_locked(), mutex_lock(), mutex_unlock(),
mutex_trylock(), mutex_is_locked(), mutex_is_locked(), test_and_set_bit_lock(), ...

Should All Kernel Atomics Be Added to BPF?

It is true that increasing numbers of BPF programs feature concurrency,
both with each other and with the rest of the kernel, however ...

Should All Kernel Atomics Be Added to BPF?

It is true that increasing numbers of BPF programs feature concurrency,
both with each other and with the rest of the kernel, however ...

… much of this concurrency is handled by BPF helpers, reducing (but by
no means eliminating) the need for concurrency in BPF programs.

Should All Kernel Atomics Be Added to BPF?

It is true that increasing numbers of BPF programs feature concurrency,
both with each other and with the rest of the kernel, however ...

… much concurrency is in BPF helpers.
Therefore, add the most popular/useful first, for example:

atomic_inc()*, cmpxchg()*, fetch_and_add()*, xchg()*,
atomic_add()*, atomic_sub()*, atomic_and()*, atomic_or()*, and
atomic_xor()*

smp_load_acquire() & smp_store_release, not so much smp_rmb() &
smp_wmb()

Should All Kernel Atomics Be Added to BPF?

* Already in mainline.

Which Memory Model for BPF?

An Appropriate Subset of
the Linux Kernel Memory Model

“Use the right tool for the job!”

Exhaustive/exact analysis of small programs: Herd7
Requires hand translation

Dynamic/approximate (but quite good) analysis of full kernel: KCSAN
Requires integration with BPF (which looks doable)
Handling of userspace components is still an open question

How Would a BPF Memory Model Work?

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

Hand translate usermode and BPF programs to Linux-kernel litmus tests
Normal load/store remains as-is, but litmus test uses pointers
volatile-casted load to READ_ONCE()
volatile-casted store to WRITE_ONCE()
__sync_fetch_and_add() to atomic_fetch_add()
__sync_fetch_and_sub() to atomic_fetch_sub()
__sync_val_compare_and_swap() to cmpxchg()
__sync_lock_test_and_set() to xchg()
BPF map access as that access while holding lock (e.g., bpftrace)

How Would a BPF Memory Model Work With Herd7?

Create Litmus Test From Simplified atomics.c Tests

/* In-kernel BPF program. tools/testing/selftests/bpf/progs/atomics.c */
__u64 xchg64_value = 1;
__u64 xchg64_result = 0;

SEC("fentry/bpf_fentry_test1")
int BPF_PROG(xchg, int a)
{
 __u64 val64 = 2;

 xchg64_result = __sync_lock_test_and_set(&xchg64_value, val64);
}

/* User-mode BPF program. tools/testing/selftests/bpf/prog_tests/atomics.c */
static void test_xchg(struct atomics *skel)
{
 err = bpf_prog_test_run(prog_fd, 1, NULL, 0, NULL, NULL, &retval, &duration);
 ASSERT_EQ(skel->data->xchg64_value, 2, "xchg64_value");
}

Create Litmus Test From Simplified atomics.c Tests

C bpf-xchg

{}

P0(int *xchg64_result, int *xchg64_value) // test_xchg()
{
 int r0;
 int r1;

 r1 = smp_load_acquire(xchg64_result);
 if (r1) { // BPF program complete?
 r2 = *xchg64_value;
 }
}

P1(int *xchg64_result, int *xchg64_value) // BPF_PROG(xchg)
{

 r1 = atomic_xchg(xchg64_value, 2);
 smp_store_release(xchg64_result, 1); // Emulate BPF program completion
}

locations [xchg64_result; xchg64_value]
exists ((0:r1=1 /\ ~0:r2=2) \/ ~1:r1=0) (* Bad outcome. *)

Run Litmus Test Using herd7 and LKMM

$ cd tools/memory-model
$ herd7 -conf linux-kernel.cfg /tmp/bpf-xchg.litmus
Test bpf-xchg Allowed
States 2
0:r1=0; 0:r2=0; 1:r1=0; xchg64_result=1; xchg64_value=2;
0:r1=1; 0:r2=2; 1:r1=0; xchg64_result=1; xchg64_value=2;
No
Witnesses
Positive: 0 Negative: 2
Condition exists (0:r1=1 /\ not (0:r2=2) \/ not (1:r1=0))
Observation bpf-xchg Never 0 2
Time bpf-xchg 0.00
Hash=d0b286381f9e93048632ae9c9d25e363
$ # Bad condition never happens

Kernel Concurrency Sanitizer (KCSAN) provides SW watchpoints, which
are used to detect data races and to enforce concurrency design rules.

In-kernel C code such as BPF helpers are already handled by KCSAN.
BPF JIT code can use KCSAN public API:

__tsan_{read,write}{1,2,4,8}() preferred.
__kcsan_check_access() also works, but not as good performance.
This should also cover bpftrace
Userspace code TBD

How to Adapt KCSAN to BPF Programs? (1/2)

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

Kernel Concurrency Sanitizer (KCSAN) permits considerable control of
the types of races reported (showing defaults):

CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y
CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=y
CONFIG_KCSAN_INTERRUPT_WATCHER=n
CONFIG_KCSAN_STRICT=n (Used by RCU to override the above.)
CONFIG_DEBUG_INFO=y # Translate stack addresses

How to Adapt KCSAN to BPF Programs? (2/2)

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

What Does KCSAN Tell You? (1/2)

==
BUG: KCSAN: data-race in tick_nohz_idle_stop_tick / tick_nohz_idle_stop_tick

write to 0xffffffffabc1c940 of 4 bytes by task 0 on cpu 7:
 tick_nohz_idle_stop_tick+0x146/0x3c0
 do_idle+0x103/0x290
 cpu_startup_entry+0x15/0x20
 secondary_startup_64_no_verify+0xc3/0xcb

no locks held by swapper/7/0.
irq event stamp: 1390256
hardirqs last enabled at (1390255): [<ffffffffa99d0b50>] tick_nohz_idle_enter+0x110/0x140
hardirqs last disabled at (1390256): [<ffffffffa990879c>] do_idle+0x9c/0x290
softirqs last enabled at (1390246): [<ffffffffa98b5574>] __irq_exit_rcu+0x64/0xc0
softirqs last disabled at (1390223): [<ffffffffa98b5574>] __irq_exit_rcu+0x64/0xc0

What Does KCSAN Tell You? (2/2)

read to 0xffffffffabc1c940 of 4 bytes by task 0 on cpu 10:
 tick_nohz_idle_stop_tick+0x12c/0x3c0
 do_idle+0x103/0x290
 cpu_startup_entry+0x15/0x20
 secondary_startup_64_no_verify+0xc3/0xcb

no locks held by swapper/10/0.
irq event stamp: 3677807
hardirqs last enabled at (3677806): [<ffffffffa99d0b50>] tick_nohz_idle_enter+0x110/0x140
hardirqs last disabled at (3677807): [<ffffffffa990879c>] do_idle+0x9c/0x290
softirqs last enabled at (3677797): [<ffffffffa98b5574>] __irq_exit_rcu+0x64/0xc0
softirqs last disabled at (3677788): [<ffffffffa98b5574>] __irq_exit_rcu+0x64/0xc0

Reported by Kernel Concurrency Sanitizer on:
CPU: 10 PID: 0 Comm: swapper/10 Not tainted 5.14.0-next-20210902+ #2916
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
==

Kernel Concurrency Sanitizer (KCSAN) provides SW watchpoints, which
are used to detect data races and to enforce concurrency design rules.

ASSERT_EXCLUSIVE_ACCESS() complains if racing access.
ASSERT_EXCLUSIVE_WRITER() complains if racing write.
Use these to detect violations of your concurrency design.

How to Adapt BPF Programs to KCSAN?

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

It depends...
LKMM does moral equivalent of full state-space search, while
KCSAN only detects problems that actually occur in testing.

LKMM requires hand translating to tiny restricted litmus tests, while
KCSAN can operate across the entire kernel. For example, LKMM
does not handle unbounded loops, function calls, interrupts, and so
on, though many of these can be emulated.

LKMM can check for complex conditions in the “exists” clause, while
KCSAN gets a similar effect using ASSERT_EXCLUSIVE_ACCESS() and
ASSERT_EXCLUSIVE_WRITER(), along with WARN_ON_ONCE() &c.

LKMM/herd7 or KCSAN?

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/
https://docs.google.com/document/d/1r4-ggu8RW2nzvFeT8AQxaCn6c-XkuXljzf7m0j5PypM/edit?usp=sharing

Questions & Discussion

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

