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Agenda

● Atomics and Promises
● Chunking data + BPF ring buffer
● What next for BPF security auditing?
● What's missing for implementing enforcement 

policies?



Why did we add atomics to BPF?
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Some of our events are pretty big!



Promises

It’s pretty useful to break things up into smaller chunks.

We use unique IDs to connect the chunks. We call this 
connection a “promise” - like in async frameworks.

That’s why we needed atomics.
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Why do we like the BPF ringbuf?



CPU0 CPU1 CPU2 CPU3

Userspace 
agent

Shallow Deep

CPU CPU1 CPU2 CPU3

Userspace 
agent

Ring buffers: perf buffer vs BPF ringbuf

Reordering!



Ring buffer chunking trick



Proprietary + Confidential
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Ring buffers: chunking

● Verifier likes to know buffer sizes in advance

● But allocating max-possible size is bad

● Break down large data into fixed-size chunks

small, 
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What's next for BPF security auditing?



Info Why not LSM? Current source Problem

Process execution N/A BPF LSM N/A

Mmap Missing vma Perf (not BPF) Inflexible: missing data

Socket ops Missing e.g. port Tangle of fexit hooks Maintenance

Module load Missing name Tracepoints (BPF) Inflexible: missing data

BPF LSM for Auditing - Current State

We don’t audit through BPF LSM as much as we’d like. Some examples:



Experience: Auditing with BPF

Currently there is no clean and flexible surface to attach to

LSM provides a bespoke surface for enforcement.

        That surface captures value created by enforcement experts

Do we want a bespoke surface for auditing?

To capture value created by auditing experts



Big picture: BPF LSM
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Add new LSM hooks

● Add new LSM hooks at these places
● These new LSM hooks are for bookkeeping only:

○ There are other such hooks:
■ blob/state management 
■ Introduced for specific LSMs needs

Pro: Easy to implement
Con: Currently not tied to an existing MAC policy (but they
           could be)



Big picture: BPF audit
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Expose audit events to BPF

● Work needed to get BPF attachment points (currently all static 

inline)

● Existing surfaces is exactly what is needed for the text output 

format. Would need to extend it significantly.

Pro: Existing surface
  Con: Major overhaul of audit



Expose perf events to BPF

● Existing API for:
○ mmap
○ changes to kernel text
○ namespaces
○ fork, exit, exec
○ bpf program load and unload

● FTrace CFLAGS are currently disabled on perf functions

Pro: Existing surface (with rich arguments)
Con: New events will need perf implementation + userspace 
          changes



Big picture: BPF perf
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What's missing for advanced 
enforcement? 



● Required to persist security state across reboots

● LSMs use security labels implemented using xattrs

● BPF LSM cannot read or write xattrs

● Helpers needed!

○ bpf_get_xattr

○ bpf_set_xattr

Persistent security tags


