
Brendan Jackman (jackmanb@google.com)
KP Singh (kpsingh@google.com)
Linux Plumbers Conference 2021

BPF + Security @ Google

mailto:jackmanb@google.com
mailto:kpsingh@google.com

Agenda

● Atomics and Promises
● Chunking data + BPF ring buffer
● What next for BPF security auditing?
● What's missing for implementing enforcement

policies?

Why did we add atomics to BPF?

Promises

execution

argv

env

execution

argv

env

execution

argv

env

Some of our events are pretty big!

Promises

It’s pretty useful to break things up into smaller chunks.

We use unique IDs to connect the chunks. We call this
connection a “promise” - like in async frameworks.

That’s why we needed atomics.

execution

argv

env

execution

argv

env

execution

argv

env

Why do we like the BPF ringbuf?

CPU0 CPU1 CPU2 CPU3

Userspace
agent

Shallow Deep

CPU CPU1 CPU2 CPU3

Userspace
agent

Ring buffers: perf buffer vs BPF ringbuf

Reordering!

Ring buffer chunking trick

Proprietary + Confidential

execution

argv chunk
0

argv chunk
1

large,
variable-sized
data

argv chunk
2
(padding)

Ring buffers: chunking

● Verifier likes to know buffer sizes in advance

● But allocating max-possible size is bad

● Break down large data into fixed-size chunks

small,
fixed-size
chunks

What's next for BPF security auditing?

Info Why not LSM? Current source Problem

Process execution N/A BPF LSM N/A

Mmap Missing vma Perf (not BPF) Inflexible: missing data

Socket ops Missing e.g. port Tangle of fexit hooks Maintenance

Module load Missing name Tracepoints (BPF) Inflexible: missing data

BPF LSM for Auditing - Current State

We don’t audit through BPF LSM as much as we’d like. Some examples:

Experience: Auditing with BPF

Currently there is no clean and flexible surface to attach to

LSM provides a bespoke surface for enforcement.

 That surface captures value created by enforcement experts

Do we want a bespoke surface for auditing?

To capture value created by auditing experts

Big picture: BPF LSM

Rest of the kernel Easily-updated userspace
code

LSM
API

Inflexible policy
engines

BPF LSM

Other BPF APIs

Add new LSM hooks

● Add new LSM hooks at these places
● These new LSM hooks are for bookkeeping only:

○ There are other such hooks:
■ blob/state management
■ Introduced for specific LSMs needs

Pro: Easy to implement
Con: Currently not tied to an existing MAC policy (but they
 could be)

Big picture: BPF audit

audit
API

Inflexible text
output format

New BPF surface?

Other BPF APIs

Rest of the kernel Easily-updated userspace
code

Expose audit events to BPF

● Work needed to get BPF attachment points (currently all static

inline)

● Existing surfaces is exactly what is needed for the text output

format. Would need to extend it significantly.

Pro: Existing surface
 Con: Major overhaul of audit

Expose perf events to BPF

● Existing API for:
○ mmap
○ changes to kernel text
○ namespaces
○ fork, exit, exec
○ bpf program load and unload

● FTrace CFLAGS are currently disabled on perf functions

Pro: Existing surface (with rich arguments)
Con: New events will need perf implementation + userspace
 changes

Big picture: BPF perf

perf
API

Inflexible binary
output format

New BPF surface?

Other BPF APIs

Rest of the kernel Easily-updated userspace
code

What's missing for advanced
enforcement?

● Required to persist security state across reboots

● LSMs use security labels implemented using xattrs

● BPF LSM cannot read or write xattrs

● Helpers needed!

○ bpf_get_xattr

○ bpf_set_xattr

Persistent security tags

