
Defragmenting the loader landscape

Lorenz Bauer & Timo Beckers
Cloudflare Isovalent

Linux Plumbers 2021

Agenda

Part 1: Introducing cilium/ebpf + Community Use Cases

Part 2: Proposal: UAPI bindings

Part 3: Proposal: Integrating ELF loaders

2

Introducing cilium/ebpf
What is it, and what can it do?

3

What is cilium/ebpf?

- eBPF library in pure Go: github.com/cilium/ebpf
- Maintained by Cloudflare and Cilium developers
- Easy to distribute

- No dependency on C compiler
- Great cross-compilation support

- Focus on “fat userspace” eBPF for long-running programs
- MIT licensed

4

https://github.com/cilium/ebpf

WHYYYY?

Go has a fat runtime:

● C FFI (aka CGo) is slower than syscalls and harder to distribute
● Makes binaries bigger
● Go runtime profiler cannot see into C-land

5

https://github.com/golang/go/issues/9704
https://github.com/golang/go/issues/24355
https://github.com/cilium/cilium/pull/9306

Community Use Cases
Who uses it and what for?

6

runc + containerd

A container runtime used by Docker and Kubernetes.

Use package asm to assemble BPF cgroupv2 device filter at runtime, package link
to attach them to cgroups.

github.com/containerd/cgroups

github.com/opencontainers/runc

7

https://github.com/containerd/cgroups/tree/main/v2
https://github.com/opencontainers/runc/tree/master/libcontainer/cgroups/ebpf

DataDog: datadog-agent

Enables workload observability.

Use package asm to edit BPF at runtime, package perf to read perf_event_ring.

https://github.com/DataDog/datadog-agent

https://github.com/DataDog/ebpf-manager

8

https://github.com/DataDog/datadog-agent
https://github.com/DataDog/ebpf-manager

Intel: CRI Resource Manager

Go-based Prometheus exporter to monitor a container’s AVX512 activity using
FPU Tracepoints.

The metrics are used to schedule more latency-sensitive workloads away from
heavy AVX512 users, who tend to be noisy neighbours.

github.com/intel/cri-resource-manager

9

https://github.com/intel/cri-resource-manager

Palantir: trace getaddrinfo

Use bpf2go to build standalone tools that can execute anywhere, link to trace
libc’s getaddrinfo in all containers on the platform.

See the talk below for the how & why:

10

Using user-space tracing to solve DNS problems
by Andrius Grabauskas
https://youtu.be/0RDp1IPxbg0

https://youtu.be/0RDp1IPxbg0

Hetzner Cloud: limit conntrack entries

Count and limit conntrack entries per VM on hypervisors using kprobes.

bpf2go allows for deploying a Go daemon with pre-compiled eBPF programs
embedded. The built-in link.Kprobe() API manages kprobes easily out of the box.

11

Microsoft: Inspektor Gadget

12

Collection of tools similar to BCC to debug and inspect Kubernetes applications.

Using bpf2go, CO-RE, BPF iterators.

github.com/kinvolk/inspektor-gadget

eCHO episode 19 - Inspektor Gadget
with Marga Manterola
https://youtu.be/RZ2qNm_vlUc

https://github.com/kinvolk/inspektor-gadget
https://youtu.be/RZ2qNm_vlUc

Cloudflare

Control plane for XDP-based DDoS mitigation / L4 load balancer / sk_lookup, fair
share rate limiter in unprivileged socket filter.

Use most of the functionality!

github.com/cloudflare/rakelimit

13

http://github.com/cloudflare/rakelimit

Container Network Interface implementation with fine grained network ACL and
observability.

Manage map persistence, receive datapath notifications via perf ring, generate
programs on the fly using the assembler. Planning to replace iproute2 and bpftool
with cilium/ebpf.

github.com/cilium/cilium

Cilium

14

https://github.com/cilium/cilium

UAPI bindings
How can we simplify uapi/bpf.h for code gen?

15

Generating Go types for BPF syscalls

● Maintaining bpf(2) syscall bindings by hand = 😞
● Instead: read vmlinux BTF, write out Go types and functions

$ go doc . | grep MapLookupElem
func MapLookupElem(attr *MapLookupElemAttr) error
type MapLookupElemAttr struct{ ... }

16

Challenges

● No union type
● Runtime uses GC

○ Pointers need special treatment
○ No explicit control over heap / stack allocation

17

Unnamed types / fields
/* flags for BPF_MAP_UPDATE_ELEM command */

enum {

 BPF_ANY = 0,

 BPF_NOEXIST = 1,

 BPF_EXIST = 2,

 BPF_F_LOCK = 4,

};

union bpf_attr {

 struct {

 __u32 map_type;

 __u32 key_size;

 __u32 value_size;

 __u32 max_entries;

 ...

 };

...

18

Unnamed types / fields
/* flags for BPF_MAP_UPDATE_ELEM command */

enum {

 BPF_ANY = 0,

 BPF_NOEXIST = 1,

 BPF_EXIST = 2,

 BPF_F_LOCK = 4,

};

union bpf_attr {

 struct {

 __u32 map_type;

 __u32 key_size;

 __u32 value_size;

 __u32 max_entries;

 ...

 };

...

19

enum bpf_map_update_flags {

 BPF_ANY = 0,

 BPF_NOEXIST = 1,

 BPF_EXIST = 2,

 BPF_F_LOCK = 4,

};

union bpf_attr {

 struct {

 __u32 map_type;

 __u32 key_size;

 __u32 value_size;

 __u32 max_entries;

 ...

 } map_create;

...

=>

Preprocessor macros
#define BPF_F_QUERY_EFFECTIVE (1U << 0)

/* Flags for BPF_PROG_TEST_RUN */

#define BPF_F_TEST_RUN_ON_CPU (1U << 0)

20

enum bpf_prog_query_flags {

 BPF_F_QUERY_EFFECTIVE = (1U << 0),

};

enum bpf_prog_run_flags {

 BPF_F_TEST_RUN_ON_CPU = (1U << 0),

};

=>

Invisible pointers
struct { /* used by BPF_OBJ_* commands */

 __aligned_u64 pathname;

 __u32 bpf_fd;

 __u32 file_flags;

};

21

struct {

 __bpf_md_ptr(char *, pathname);

 __u32 bpf_fd;

 __u32 file_flags;

};

// equivalent to

struct {

 union {

 char *pathname;

 __u64 :64;

 } __attribute__((aligned(8)));

 __u32 bpf_fd;

 __u32 file_flags;

};

=>

Field overloading
struct { /* used by BPF_*_GET_*_ID */

 union {

 __u32 start_id;

 __u32 prog_id;

 ...

 };

 __u32 next_id;

 __u32 open_flags;

};

22

struct { // BPF_PROG_GET_FD_BY_ID

 __u32 prog_id;

} prog_get_fd_by_id;

struct { // BPF_MAP_GET_FD_BY_ID

 __u32 map_id;

 __u32 next_id; // ignored!

 __u32 open_flags;

} map_get_fd_by_id;

struct { // BPF_(PROG|MAP|...)_GET_NEXT_ID

 __u32 start_id;

 __u32 next_id;

} obj_get_next_id;

=>

Recap: how to simplify bpf.h for robots (and humans)

● Use enums instead of macros
● Give types / fields a name

○ Anonymous unions are OK
● Use __bpf_md_ptr throughout
● Have one bpf_attr field per bpf_cmd
● All of these can be backwards compatible

23

Q&A

24

Integrating ELF loaders
How can we align “second-parties” with libbpf?

25

The Loader Landscape

Existing native libraries today:

- libbpf
- cilium/ebpf (Go)
- aya-rs (Rust)
- eBPF for Windows (cannot use GPL?)

Features still land in libbpf first, but no straightforward way for other projects to
verify compliance.

26

How could we align these projects better?

At LPC 2019, it was mentioned often that libbpf is the ‘spec’. Now how do we
codify this?

Instead of a vague ‘spec’, let’s write tests!

27

Compiler communicates with a loader through ELF binaries.

Existing loaders like libbpf, bpftool and iproute2 (now also libbpf-based) expect
ELF binaries to follow certain conventions.

Basic example, ELF section names:

- legacy maps → maps
- BTF maps → .maps
- program attach type → section name prefixes

As time went on, the eBPF feature set (and the ELF’s contents) grew more
complex, and the loader had to follow suit.

Background

28

Background

➔ How do we verify if ELFs are correctly parsed and none of its contents were
ignored? (e.g. when a new ELF section is introduced)

➔ How do we ensure the loader stays compatible with older and newer kernels
and LLVM versions?

➔ How do we verify compliance with libbpf?
➔ How can the Linux project maintain control over the toolchain and keep

everything compatible?
◆ eBPF programs that only work with loader X or Y is not an ideal situation
◆ More loaders == more ecosystem fragmentation. Or does it?

29

Selftests!

The Linux kernel ships with a set of selftests to verify if compiler, loader and kernel
behave as expected.

Building them results in userspace programs and BPF ELF objects:

xdping ← userspace executable
xdping_kern.o ← BPF ELF loaded by userspace executable
xdping.c ← userspace source
xdping_kern.c ← BPF source

30

Problem 1: selftests have complex userspace programs

Besides BPF programs themselves, selftests also require specific userspace
code to load and exercise said BPF ELFs.

- Each userspace program is specific to a particular BPF program.
- The tests are often complex and set up arbitrary netdevs, addresses, etc.
- There are simply too many to replicate and maintain in other languages,

especially by smaller teams.
- No way to verify if loader’s resulting bytecode is correct even when

accepted by the verifier. (some CO-RE offset might be off, etc.)
- Unfortunately, selftests also exist to exercise behaviour of the kernel itself,

which is not wanted/needed for a loader project.

31

Problem 2: BPF ELFs can be intentionally invalid

Some selftest ELFs are intentionally invalid for negative testing purposes, but are
not named consistently to reflect this.

Today, cilium/ebpf ignores errors loading known-invalid ones.
This is not ideal, as we need to filter based on object name (fragile):

32

Another approach is needed

In cilium/ebpf, the selftest BPF ELFs are parsed and loaded, but never executed.

There might be subtle bugs that we currently cannot uncover.

→ ‘Unit’ tests are needed that target the (userspace) loader infra in isolation.

33

Suggestion: Test BPF loaders using BPF!

The common factor in all eBPF loaders is… BPF! Can we write BPF programs that
test themselves at runtime?

Single ELF containing BPF prog(s) that:

- Contain useful lineinfo BTF for clear verifier output (using comments /
macros)

- Contains assertions:
- Reading map values
- Has the right map access been relocated here?
- Check if CO-RE relocations have been executed using known-good values

(verifier OK, but is the offset correct?)
- Generate error feedback by verifier or BPF_PROG_RUN

34

Suggestion: Minimal Userspace

Minimal userspace program that is:

- devoid of any ‘business’ logic and only interacts with simple libbpf APIs
- easy to port to other platforms / languages

It should be limited to high-level tasks:

- Find ELFs on disk (e.g. a glob)
- Invoke the loader (e.g. libbpf) that loads progs, maps, BTF, … and performs

the necessary transformations
- Call PROG_RUN on all programs in the ELF
- Succeed if test run returns 0

35

Examples of eBPF runtime tests

cilium/ebpf contains a few eBPF runtime tests today:

Static data relocation

36

CO-RE relocations

Next Steps

An independent loader test suite is needed, separate from other end-to-end
kernel / eBPF selftests. Suggestion:

→ Submit a new ‘test-loader’ test suite to Linux tree.

→ Agree (iteratively) on a common set of behaviours all loaders must implement.

37

Example: PROG_ARRAY auto-population

For declaring tail call maps more intuitively in BTF map definitions, cilium/ebpf allows
using the .values mechanism to specify PROG_ARRAY contents directly.

Inspired by libbpf’s map-in-map declarations, but not yet supported in libbpf.

Accepting this behaviour into the loader test suite signifies a contract / agreement for all
loaders to implement it.

38

Other Thoughts

- Easier to bootstrap new loaders / libraries:
- Minimum requirement is ELF parsing, implementing PROG_LOAD and PROG_RUN syscalls.
- Iterate from there to support more and more of the test suite incrementally.

- Potentially reduce fragmentation in the ecosystem due to having a clear
common goal, with fewer (or, ideally, none) deviations from libbpf behaviour.

39

Q&A

40

