
Ahead-of-time compiled bpftrace programs

Daniel Xu

Current compilation model

● Bytecode built from scratch for every invocation, then run
● “Duplicated” work between identical invocations:

○ Lexing, parsing, semantic analysis, field analysis, codegen (modulo offsets, constants, and
kernel features)

● “Unique” work “...”:
○ Tracepoint format parsing, clang parsing of headers and/or reconstructed BTF definitions,

runtime setup

bpftrace -e 'BEGIN { print("hello world") }'

Current compilation model cont.

● Advantages
○ Straightforward to implement -- any host information you need during compilation can be

trivially accessed
○ Struct layouts, symbol addresses, tracepoint fields, etc. are more likely to be

accurate/up-to-date
● Disadvantages

○ Shipping and running LLVM on production hosts is heavy and expensive (size + memory +
cpu)

○ Time to first trace is slow b/c we have to run all AST passes and runtime setup
○ Difficult to sign bpftrace scripts

Why AOT?

● Smaller binaries
○ -rwxr-xr-x 1 root root 99M Sep 7 17:26 /usr/lib/libLLVM-12.so

● Faster
● Have cake and eat it too

○ Ease of use along with efficiency of libbpf-based tools

AOT end goal

bpftrace -e 'BEGIN { print("hello world") }' --aot out.btaot

file ./out.btaot
./out.btaot: ELF 64-bit LSB pie executable, x86-64,[...]

ldd ./out.btaot
 statically linked

./out.btaot
Attaching 1 probe...
hello world

AOT design

● Ship a fully executable runtime shim with bpftrace
● When compiling a AOT bpftrace program:

○ Build the metadata
○ Build the bytecode
○ Make a copy of runtime shim and store metadata + bytecode into a special ELF section (this is

the final executable)
● When the shim runs, it knows to look inside itself for the metadata + bytecode

and start execution

AOT design cont.

● Green -> added to all codepaths
● Orange -> added to AOT compile codepath

Maybe more relocations here too

See next slide

AOT design cont.

● Green -> added to all codepaths
● Orange -> added to AOT compile codepath

AOT design cont.

AOT execution

Solved problems

● Hard coded map FDs in bytecode
○ Create maps after codegen and fixup immediates before loading prog

● How to handle async IDs
○ Ship all the (format string, args) with the metadata

● How to drop LLVM + libclang dependency for AOT binaries
○ New bpftrace AOT runtime target (aot-rt) target
○ New bcc .so: https://github.com/iovisor/bcc/pull/3516
○ Not completely solved!

● How to disable (currently) unsupported features
○ New feature check AST pass on compile path

https://github.com/iovisor/bcc/pull/3516

Unsolved problems

● How to create a fully static aot-rt binary?
○ Can cmake be finessed enough to accomplish this?
○ What about BCC, libc, etc.?

Unsolved problems cont.

● How to relocate field accesses on kernel structs?
○ Reuse libbpf CO-RE or roll custom solution?

● Is using libbpf for loading feasible?
○ bpftrace code modifications
○ Ability to mock out maps / unit testing?
○ Extra overhead constructing ELF files for libbpf to work with?
○ Tension between distro packaging rules and vendoring

Unsolved problems cont.

● How to completely remove dependence on LLVM for AOT binary?
○ Currently using LLVMDemangle.a and LLVMSupport.a for C++ symbol demangling
○ C++ provided demangler does not work as well

Unsolved problems cont.

● What to do about tracepoint fields?
○ Assume they’re stable enough between hosts/kernels?

Unsolved problems cont.

● Other disabled features
○ Positional parameters
○ curtask builtin
○ kaddr()/uaddr()/cgroupid() builtins
○ USDTs

■ Requires analyzing binary for precise offset and argument information
○ watchpoints

Current status

● Functional prototype merged into master
● Metadata + bytecode currently separate file (not embedded into aot-rt)
● Real runtime test checked into CI:

NAME profile
RUN {{BPFTRACE}} -e 'profile:hz:599 { @[tid] = count(); exit();}' --aot \
 /tmp/tmpscript.btaot && {{BPFTRACE_AOTRT}} /tmp/tmpscript.btaot
EXPECT \@\[[0-9]*\]\:\s[0-9]
TIMEOUT 5

Questions?

