
Apps not boilerplate,
leveraging Android's CHRE and Zephyr

Yuval Peress

Motivation
● Reduce time to market

● Reduce cost of maintenance and updates

● Reduce implementation complexity

● Improve testability

● Improve modularity and code reusability

Developers should be able to focus on WHAT they’re building, not HOW.

2

Motivation by pseudo-code (timestamp spreading only)

3

static void do_something_interesting(sample) {

 // This is our actual code

}

static void read_accelerometer(...) {

 while (has_samples(accel)) {

 sample = read_sample(accel);

 calculate_timestamp(sample);

 post_to_event_loop(sample);

 }

}

static void interrupt_handler(...) {

 save_current_timestamp();

 post_handler(read_accelerometer);

}

void event_loop_thread() {

 while (1) {

 sample = poll_samples();

 if (sample) {

 broadcast_sample(sample);

 }

 yield();

 }

}

int main() {

 register_interrupt_handler(accel,

 interrupt_handler);

 create_event_loop_thread();

 subscribe_to_events(do_something_interesting);

 ...

}

Motivation by pseudo-code (timestamp spreading only)

4

static void nanoappStart(void) {

 request_events(TYPE_ACCEL, …);

}

static void nanoappHandleEvent(event) {

 // This is our actual code

}

What is Zephyr?
● An embedded RTOS that is currently

being integrated into chromium’s EC.

5

What is Zephyr?
● An embedded RTOS that is currently

being integrated into chromium’s EC.

● Uses devicetree to specify how the

board is connected.

6

&i2c0 {
 /* Add BMI160 to I2C bus */
 accel: bmi@68 {
 compatible = "bosch,bmi160";
 reg = <0x68>;
 label = "accel-i2c";
 };
};

What is Zephyr?
● An embedded RTOS that is currently

being integrated into chromium’s EC.

● Uses devicetree to specify how the

board is connected.

● Provides common device APIs to

abstract hardware details.

7

struct sensor_value val;
const struct device *dev =
 device_get_binding(
 DT_LABEL(DT_NODELABEL(accel)));

/* Read the X value from an accelerometer. */
sensor_channel_get(dev, SENSOR_CHAN_ACCEL_X, &val);

What is CHRE?
● Context Hub Runtime Environment

● Provides a framework for running nanoapps

○ Small feature applications that run on the EC and generally provide some functionality to the

application or another processor by running in a low power environment. Examples: lid angle

calculation, online sensor calibration, geofencing, WiFi scanning, and more.

○ Have 3 entry points

■ nanoappStart()
■ nanoappStop()
■ nanoappHandleEvent()

● Manages events in a pub/sub like model between nanoapps and peripheral

frameworks

8

Advanced CHRE features
● Supports limited memory footprint:

able to dynamically load/unload/start/stop nanoapps.

● Low risk updates:

an OTA update can just update nanoapps

● Supports a large array of peripherals:

WiFi, BT, GNSS, IMU sensors, audio, WWAN.

9

How it all fits together
● Everything uses Zephyr at the core.

● Sensor Framework uses devicetree to

configure itself and will communicate

directly with the CHRE as well as with the

application using a custom TX Layer.

● Nanoapps can be added statically or

dynamically and may communicate with the

CHRE or with the application using the

same TX layer as the frameworks..

● Other frameworks (WiFi, GNSS, etc) can

also be added in the future.

10

Sensor Framework CHRE

Zephyr

NanoappsApplication code

The Sensor Framework/Subsystem
● Timestamp spreading

● Sample rate arbitration

● Sample batching

● Support automated power

management modes

11

Why should I care?
Reduce time to market

To get an app going you just need the

devicetree files and the nanoapp that consumes

the events.

Reduce cost

Maintenance and updates to the RTOS, drivers,

event routing, and frameworks are community

responsibilities.

12

Reduce implementation complexity

The modularity of the components means that

developers can focus on one thing at a time.

The problem is no longer a system design

problem, but building a product.

Improve testability, modularity, and reusability

Since each nanoapp has well defined input and

output events, the system as a whole is much

more modular. Comprised of components that

are easily tested and reused.

How far can this go?
● Bicycle automatic transmission? Nanoapp that consumes torque, power, and

cadence from and shifts gears.

● Wearable activity detection and tracking? Nanoapps for swimming, running,

cycling, etc.

● Smart scale? Nanoapp to compute body metrics from impedance.

● NPM like nanoapp package manager?

If Zephyr was chosen to offload the RTOS components of the EC,

CHRE can be thought of as offloading the framework.

13

Discussion…
14

Further readings:

● Zephyr - https://www.zephyrproject.org/

● CHRE - https://source.android.com/devices/contexthub

https://www.zephyrproject.org/
https://source.android.com/devices/contexthub

