

Formalizing Kernel Synchronization Primitives
with PREEMPT_RT

Linux Plumbers Conference
September 20-24, 2021

Refereed Track Session
Ahmed S. Darwish <a.darwish@linutronix.de>

Expected Audience – 1

Kernel and driver developers
 Get a glimpse of locking subsystem development
 See how core subsystems adapt to competing call-

site needs

PREEMPT_RT advanced users
 See PREEMPT_RT development behind the scenes

(“how the sausages gets made”)
 Appreciate the complexity of the task at hand

Expected Audience – 2

Subsystem Maintainers

 See how PREEMPT_RT implicitly and explicitly helps
your subsystem :)

Locking Subsystem Maintainers

 Hmm, You already know everything in this talk ;-)

PREEMPT_RT Preliminaries – 1

The Big Picture

 Transform the Linux Kernel, a General Purpose OS,
to a hard-realtime system

 while maintaining full user-space ABI compatibility
 and maintaining full in-kernel API comptability;

e.g., for all the existing mainline Linux drivers
 That is, you can have your cake and eat it too...

PREEMPT_RT Preliminaries – 2

Minimize sources of scheduling latency / interference

Allow scheduling to happen almost anywhere. Limit
the effects of:

 Interrupts
 Soft interrupts (softirqs)
 Interrupt disable regions
 Preemption disable regions
 Concurrency mechanisms
 ...

PREEMPT_RT Preliminaries – 3

Interrupt handlers

 Force interrupt handlers to run in thread context –
thus scheduler and priority controlled

Soft interrupts (softirqs)

 Force softirqs to run in thread context – thus also
scheduler and priority controlled

PREEMPT_RT Preliminaries – 4

Spinning locks
 Require preemption, and sometimes irqs, disabled
 Substitute with RT-Mutexes (except raw_spinlock

special cases)

Blocking locks
 Use RT-Mutexes with Priority Inheritance (not all

blocking locks are covered)
 Documentation/locking/locktypes.rst

Formalizing Kernel Synchronization Primitives
with PREEMPT_RT

Sequence Counters & Sequential Locks

Sequence Counters: Definition & Usage

 A reader-writer consistency mechanism with
lockless readers (read-only retry loops), and no
writer starvation.

 Reader wants a consistent set of information and is
willing to retry if that information changes.

Sequence Counters: Definition & Usage (2)

 Usually used for data that's rarely written to (e.g.
system time, statistics, ...). Can support an
arbitrarily large number of concurrent readers, but
only one writer at a time.

 Also commonly used as a cheap trylock mechanism
in hot kernel code paths

 Documentation/locking/seqlock.rst

Sequence Counters: Working mechanism

Sequence Counters: Abridged seqlock.h (1)

static inline void
write_seqcount_begin(seqcount_t *s) {
 s->sequence++;

 // Pairs with smp_rmb() at read_seqcount_retry()
 smp_wmb();
}

static inline void
write_seqcount_end(seqcount_t *s) {
 // Pairs with smp_rmb() at read_seqcount_begin()
 smp_wmb();

 s->sequence++;
}

Sequence Counters: Abridged seqlock.h (2)

static unsigned
read_seqcount_begin(seqcount_t *s) {
 while ((__seq = s->sequece) & 1))
 cpu_relax();
 smp_rmb();
 return __seq;
}

static int
read_seqcount_retry(seqcount_t *s, unsigned start) {
 smp_rmb();
 return unlikely(s->sequence != start);
}

Seqcount Req. 1: Write Serialization

Seqcount Req. 2: Preemption Disable

Seqcount Req. 2: Preemption Disable (2)

Sequence Counters: Example Usage

Write side

mutex_lock(&x);
…
preempt_disable();
write_seqcount_begin(&foo_seqcount);
…
write_seqcount_end(&foo_seqcount);
preempt_enable();
…
mutex_unlock(&x);

Sequence Counters: Example Usage (2)

Write side

spin_lock(&x); // or spin_lock_irqsave/bh()
…
write_seqcount_begin(&foo_seqcount);
…
write_seqcount_end(&foo_seqcount);
…
spin_unlock(&x);

Sequence Counters: Example Usage (3)

Read side

do {
seq = read_seqcount_begin(&foo_seqcount);

 ...
} while (read_seqcount_retry(&foo_seqcount, seq));

Sequence Counters

Problems for PREEMPT_RT

Sequence Counters: Problems for PREEMPT_RT (1)

Sequence Counters: Problems for PREEMPT_RT (2)

Seqcount: Previous PREEMPT_RT patch solution (non-mainline)

Advantages and Disadvantages of Previous
Solution

Advantages
 Solves the latency and reader infinite loops issues

Disadvantages
 Requires call-site modifications when blocking locks

are used for writer serialization. Polluting drivers and
subsystem code with “#ifdef PREEMPT_RT” is not
acceptable.

 Introduces an extra lock, which can make
performance-sensitive subsystems’ maintainers
hesitant (even though RT is not about throughput,
minimally-intensive solutions are always preferred).

Searching for solutions...

Do we really need the extra lock?

 The extra lock attached to the seqcount was only
added in the PREEMPT_RT patch to accomplish the
lock-unlock operation for reader forward progress.

 Why? Because the seqlock.h code does not have a
reference to the write serialization lock.

 If we attach the write serialization lock to the
seqcount, that extra lock will not be needed.

 Thomas Gleixner (tglx; RT lead) asked for a survey of
all seqcount_t call sites...

Seqcount_t Call-sites Survey (1)

Survey Purpose

● Get an understanding of call-sites seqcount usage
and behavior

● Verify that “associating the write serialization lock to
the seqcount_t” solution will be applicable to almost
all call sites

● Survey is attached to presentation materials folder:
“seqcount_call-sites_survey.ods”.

Seqcount_t Call-sites Survey (2)

Survey results

● All call-sites were analyzed and surveyed; 26 in total.
● Multiple call-sites forgot to manually disable

preemption when using blocking locks for writer
serialization

● Some call-sites abused sequence counters API or used
them in wrong contexts. Such cases were substituted
with alternative mechanisms.

Seqcount_t Call-sites Survey (3)

Resulting bug-fixes and cleanups to multiple subsystems:

● mm/swap: Do not abuse the seqcount_t latching API
● net: core: device_rename: Use rwsem instead of a seqcount
● u64_stats: Document writer non-preemptibility requirement
● net: mdiobus: Disable preemption upon u64_stats update
● block: nr_sects_write(): Disable preemption on seqcount write
● net: phy: fixed_phy: Remove unused seqcount
● seqlock: lockdep assert non-preemptibility on seqcount_t write
● dma-buf: Remove custom seqcount lockdep class key
● ...

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6446a5131e24a834606c15a965fa920041581c2c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=11d6011c2cf29f7c8181ebde6c8bc0c4d83adcd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6501bf87602f799b7e502014f8bc0aa58b868277
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c7e261d81783387a0502878cd229327e7c54322e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=15b81ce5abdc4b502aa31dff2d415b79d2349d2f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=79cbb6bc3332da7162c2581e151659ab8ebaa528
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=859247d39fb008ea812e8f0c398a58a20c12899e
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=318ce71f3e3ae4108c1665f3860afa8a2a4c9f02

Seqcount_t Call-sites Survey (4)

Add guards to avoid future call-site bugs:

● Add lockdep preemption context assertions
● Add lockdep “serialization lock held” assertions
● Add explicit kernel-doc for all seqcount and seqlock

exported APIs
● Add “big picture” documentation under

Documentation/locking

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/seqlock.h?h=v5.14
https://www.kernel.org/doc/html/v5.14/locking/seqlock.html

Seqcount_t Call-sites Survey (5)

Final conclusion

● After all the call-site bugfixes and cleanups,
especially after converting sites abusing the
seqcount_t API, it was apparent that remaining call
sites can be converted to a “sequence counters with
associated writer serialization lock” design.

New sequence counters API:
seqcount_LOCKNAME_t

Differs by writer serialization type

● seqcount_spinlock_t
● seqcount_raw_spinlock_t
● seqcount_rwlock_t
● seqcount_mutex_t
● seqcount_ww_mutex_t

New sequence counters API:
seqcount_LOCKNAME_t (2)

Benefits

● Internally asserts that the write serialization lock is
always held for all write sections...

● More reliability: in case of blocking write
serialization locks, job of disabling preemption is
moved from call-sites to “seqlock.h” internal
implementation.

● Last point is critical for RT: preempt_disable() should
no longer be done by call-sites on their own. It is
“seqlock.h” responsibility. No more latency impacts.

New sequence counters API: seqcount_LOCKNAME_t (3)

seqcount_mutex_t foo_seq;
struct mutex mut;

mutex_init(&mut);
seqcount_mutex_init(&foo_seq, &mut);

/* triggers lockdep fail (mutex not acquired) */
write_seqcount_begin(&foo_seq);
write_seqcount_end(&foo_seq);

/* Acquire write serialization lock */
mutex_lock(&mut);

/* Inside the sequence counter write section, preemption will be
 * automatically disabled for !RT. For RT, preemption is kept
 * enabled */
write_seqcount_begin(&seq);
...
write_seqcount_end(&seq);

/* Release write serialization lock */
mutex_unlock(&mut);

seqcount_LOCKNAME_t: Summary (3)

Questions / Comments

Thank you for your attention.

a.darwish@linutronix.de
info@linutronix.de

mailto:a.darwish@linutronix.de
mailto:info@linutronix.de

Appendix: Latch sequence counters

Summary

Sequence counters with multiversion concurrency where the read section can
safely preempt or interrupt the write section.

Formalization

Implementation was earlier done through manual read and write accessors.
Proper abstractions were created as part of the sequence counters PREEMPT_RT
work.

Jon perfectly covered it in the LWN article: The seqcount latch lock type

After the formalizations, two new call-sites now exist at core printk code :-)

https://lwn.net/Articles/831540/

Appendix: Mainline status
Status

All formalizations mentiond in this talk are already merged mainline.

Submissions

Since patch series cover letters provide even more context, here is a list of the most
relevant discussions:
● [PATCH v1 v4 00/25] seqlock: Extend seqcount API with associated locks→
● [PATCH v2 0/6] seqlock: seqcount_t call sites bugfixes
● [PATCH v2 0/5] seqlock: Introduce PREEMPT_RT support
● [PATCH v1 0/8] seqlock: Introduce seqcount_latch_t
● [PATCH -tip v1 0/3] seqlock: assorted cleanups

Pull Requests

Pull requests typically provide a “big picture” context. For this work:
● [GIT pull] locking/urgent for 5.9-rc1
● [GIT PULL] locking changes for v5.10

https://lkml.kernel.org/r/20200519214547.352050-1-a.darwish@linutronix.de
https://lkml.kernel.org/r/20200603144949.1122421-1-a.darwish@linutronix.de
https://lkml.kernel.org/r/20200904153231.11994-1-a.darwish@linutronix.de
https://lkml.kernel.org/r/20200827114044.11173-1-a.darwish@linutronix.de
https://lkml.kernel.org/r/20201206162143.14387-1-a.darwish@linutronix.de
https://lkml.kernel.org/r/159708609435.2571.13948681727529247231.tglx@nanos
https://lkml.kernel.org/r/20201012135800.GA3240531@gmail.com

Appendix: Further readings

Synchronization Primitives Development

● Is Parallel Programming Hard, And, If So, What Can You Do About It?
Paul E. McKenney

● A Primer on Memory Consistency and Cache Coherence, 2nd Edition
Vijay Nagarajan et al. Synthesis Lectures on Computer Architecture

PREEMPT_RT

● A guided tour through the Preempt-RT castle
Thomas Gleixner. ELISA May 2021 special

● Real Time is Coming to Linux; What Does that Mean to You?
Steven Rostedt. Embedded Linux Conference 2018 Europe

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://www.morganclaypool.com/doi/abs/10.2200/S00962ED2V01Y201910CAC049
https://www.linutronix.de/PDF/2021_A_guided_tour_through_the_Preempt-RT_castle.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/elc-eu-2018-rt-what-does-it-mean_Steven-Rostedt.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

