
Protection Keys, Supervisor (PKS)
Ira Weiny and Rick Edgecombe



Outline

➢ Why are we doing this?
➢ PKS Hardware overview
➢ PMEM Stray Write Protection
➢ Write Protected Page Tables
➢ PKS core software
➢ Status, next steps, and acknowledgements



Why are we doing this?



Some use cases

➢ PMEM stray write protection
➢ Write protected page tables
➢ Additional use cases?
➢ Harden sensitive data like kernel keys

➢ But why not just use Page tables???



PKS Hardware Overview



PKS Hardware

➢ A protection key in each PTE
➢ Adds a Per-thread Model-specific Register (MSR) to 

control the permissions of those keys
➢ Changes to access are “fast”
➢ No page table walks
➢ TLB flushes are not required
➢ MSR is non-serializing
➢ Thread local



Page Table Entry

➢ Simple addition to the page table protections
➢ Like user space keys but applicable to kernel pages
➢ U/S bit == 0

➢ Associate each mapping (PTE) with a protection key (4 
bits)

X
D

Protection
Key

U
S

R
W



Per-Thread MSR

➢ A single per-thread register defines the accessibility 
for all the keys
➢ Bits 63-32 reserved; 31-0 define permissions for Pkey 0-15
➢ Thread local
➢ Not XSAVE managed



PKS advantages

➢ This hardware overlays additional protections on large 
domains of pages

➢ With a single place to change the protections on the 
entire domain quickly
➢ MSR write is relatively fast

➢ Changes are thread local
➢ Protection key in PTE is constant



PMEM Stray Write Protection



PMEM stray writes

➢ Persistent memory is vulnerable to ‘stray writes’
➢ PMEM is mapped in the direct map but is not really ‘allowed’
➢ A write could permanently corrupt user’s data

➢ Changing PTEs is troublesome and PKS is ‘fast’
➢ Just a simple MSR write, right?

➢ Applying PKS protections = easy
➢ Toggling PKS protections = hard



PMEM…

➢ Default protections restrict any access (no reads or 
writes)
➢ Works well with default PKS permissions

➢ Direct access is limited to the PMEM and a few other 
drivers

➢ General kernel access is wrapped with kmap*
➢ Turns out kmap was more difficult to alter than expected



Kmap issues

➢ kmap() was not thread local…
➢ Global updates were difficult

➢ kmap_thread() → kmap_local_page()
➢ Preemptable, thread local kmap

➢ Drove the need for a ‘relaxed’ mode
➢ Which was later expanded



Write Protected Page Tables



Write Protected Page Tables

➢ Purpose: prevent writes to page 
tables except through dedicated 
helpers
➢ Default RO

➢ Hardening/debugging

➢ Toggling PKS protections = easy

➢ Applying PKS protections = hard

Toggle inside helpers:
void set_pte_at(struct mm_struct *mm, unsigned long addr,

pte_t *ptep, pte_t pte);

pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,

pte_t *ptep);

int ptep_test_and_clear_young(struct vm_area_struct *vma,

unsigned long addr, pte_t *ptep);

…etc



Allocating Tables

➢ Pmem usage applies protection on 
mapping

➢ Page tables are allocated dynamically 
at runtime

➢ Changing kernel memory permissions 
is *expensive*
➢ All CPU TLB shootdown
➢ Break direct map large pages for surrounding 

memory

➢ Many page table allocations...

1GB

2MB 2MB 2MB 2MB 2MB 2MB 2MB

Worst case single page allocation

All CPU shootdown

Single new page table



Allocating Tables

➢ Not first thing with this 
problem
➢Many RFCs by me around other 

kernel memory permission 
usages

➢Secretmem unmapping direct 
map

➢ Approaches
➢Convert memory in batch and 

cache
➢Reset direct map on shrink

grouped_page_cache

Page allocator

alloc_table() free_table()

Alloc 2MB page 
and apply PKS

Reset permissions 
on shrink

Page table 
in use



Direct Map Page Tables

➢ If cache runs out of page tables, need to 

convert some more
➢ …usually requires breaking large direct map pages

➢ …which needs a page for a table

➢ …but there are none

➢ Chicken and egg



Direct Map Page Tables

Options
➢ Allocate table from break and new table from same high order 

allocation

➢ Break direct map to 4K at boot

➢ Reserve enough page tables to map the entire direct map at 4k 
at boot and pre-convert them to PKS
➢ Current solution



Core Software Support



Key allocation

➢ Keys are statically 
allocated

➢ This works well as 
the number of users 
is not anticipated to 
be large

enum pks_pkey_consumers
{

PKS_KEY_DEFAULT,
PKS_KEY_MY_FEATURE,
PKS_KEY_NR_CONSUMERS

};

…
consumer_defaults[PKS_KEY_DEFAULT] = 0;
consumer_defaults[PKS_KEY_MY_FEATURE] = 

PKR_DISABLE_WRITE;
…



Thread and Exceptions

➢ XSAVE not supported
➢ ‘struct thread_struct’ contains a cached msr
➢ First implementations skipped exception save support
➢ Eventually Andy Lutomirski came up with a cleaver 

idea
➢ Use extra space on the stack for ‘struct extended_pt_regs’



‘Relaxed’ Mode

➢ Both of the current use cases desired a ‘chicken 
switch’

➢ PMEM -- ‘memremap.pks_fault_mode’
➢ Write Protected Page Tables – ‘pkstablesoft’



‘Relaxed’ Mode

➢ So there has been a PKS 
fault…

➢ Walk tables to get the key

➢ But it could be in an interrupt…

➢ Kernel address space page 
table frees
➢ Memory hot unplug

➢ Once the key has been 
determined, the kernel can 
decide what to do

CPU 0

Memory hot unplug

Gather page tables

synchronize_rcu()

Free tables

CPU 1

PKS fault!

rcu_read_lock()

Walk tables

Get key

rcu_read_unlock()



Status, next steps, and 
acknowledgements



Status

➢ V7 patches: core and PMEM use case
➢ https://lore.kernel.org/lkml/20210804043231.2655537-1-

ira.weiny@intel.com/

➢ Documentation/core-api/protection-keys.rst

➢ RFC V2: Page table support
➢ https://lore.kernel.org/lkml/20210830235927.6443-1-

rick.p.edgecombe@intel.com/

https://lore.kernel.org/lkml/20210804043231.2655537-1-ira.weiny@intel.com/
https://lore.kernel.org/lkml/20210830235927.6443-1-rick.p.edgecombe@intel.com/


Test it out

➢ Don’t need any special HW to develop/test PKS 

features

➢ QEMU TCG support >6.0.0

➢ -cpu qemu64,+pks



PMEM next steps

➢ Continue to remove kmap() users
➢ At some point make pks_fault_mode ‘strict’



PKS Tables Next Steps

➢ RFCv2
➢Protect all known page tables
➢Handle direct map
➢Memory hotplug/unplug
➢Relaxed mode

➢ Plans
➢Performance
➢Mike Rapoport page allocation effort



Acknowledgements

➢ The following people had large input on the 

series and we would like to thank them:

➢ Dave Hansen

➢ Dan Williams

➢ Peter Zijlstra

➢ Thomas Gleixner

➢ Fenghua Yu

➢ Sean Christopherson

➢ Christoph Hellwig

➢ Andy Lutomirski


