
CXL 2.0 + Linux + QEMU = Yes

CXL 2.0 + Linux + QEMU = Yes

Introduction

Last slide first!!!

Agenda

● Introduction
● CXL 2.0 Background

○ Linux Driver Details
● QEMU
● Future

Intro/Links

● Communications
○ #cxl on OFTC
○ linux-cxl@vger.kernel.org

● Drivers
○ https://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl.git/

● QEMU
○ https://gitlab.com/bwidawsk/qemu
○ https://github.com/pmem/run_qemu

● Userspace
○ https://github.com/pmem/ndctl/tree/cxl-2.0v3
○ https://gitlab.com/bwidawsk-cxl/cxl_rs

mailto:linux-cxl@vger.kernel.org
https://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl.git/
https://gitlab.com/bwidawsk/qemu
https://github.com/pmem/run_qemu
https://github.com/pmem/ndctl/tree/cxl-2.0v3
https://gitlab.com/bwidawsk-cxl/cxl_rs

CXL 2.0 Background

Coherent Interface
Leverages PCIe® with 3
mix-and-match protocols

Low Latency
.Cache and .Memory targeted at

near CPU cache coherent latency

Asymmetric Complexity
Eases burdens of cache coherent

interface designs

Challenges

Industry trends driving demand for faster data
processing and next-gen data center performance

Increasing demand for heterogeneous computing
and server disaggregation

Need for increased memory capacity and
bandwidth

Lack of open industry standard to address next-gen
interconnect challenges

CXL Features

CXL
An open

industry-supported
cache-coherent
interconnect for

processors, memory
expansion and
accelerators

Coherent Interface
Leverages PCIe® with 3
mix-and-match protocols

Low Latency
.Cache and .Memory targeted at

near CPU cache coherent latency

Asymmetric Complexity
Eases burdens of cache coherent

interface designs

Challenges

Industry trends driving demand for faster data
processing and next-gen data center performance

Increasing demand for heterogeneous computing
and server disaggregation

Need for increased memory capacity and
bandwidth

Lack of open industry standard to address next-gen
interconnect challenges

CXL Features

CXL
An open

industry-supported
cache-coherent
interconnect for

processors, memory
expansion and
accelerators

CXL Board of Directors

Compute Express Link™ and CXL™ Consortium are trademarks of the Compute Express Link Consortium.

Who Cares?

Usage Models

Usage Models

 Ex #3: Add-in Card (AIC) Ex #1: EDSFF E1.S Ex #2: EDSFF E3.S / E3.L

Reference: snia.org

Factors EDSFF E1.S EDSFF E3.S / E3.L AIC
Area vs. DDRx Server DIMM • Smaller • Larger • Larger (larger than E3.S/L)

Expected Max. Power Range • 12 ~ 25W • 25W ~ 40W (1T), 40W ~ 70W (2T) • Similar range compared to E3.S/L

Form Factors

CXL 1.1 Device

 CPU CXL1.1 DP

RCiEP
D0 F0

C
X

L

 CXL
DVSEC

RCiEP
Or RPCXL 2.0

Switch

C
X

L

CXL Upstream Switch Port,
Appears as PCIe USP

CXL DSP
Appears as
PCIe DSP

PCIe DSP

CXL 2.0 RP appears
as PCIe RP

PCI
e

C
X

L 2.0
 D

evice

EP
D0 F0

 CXL
DVSEC

CXL 2.0
hierarchies

CXL 1.1
hierarchy

P
C

Ie
device

CXL 2.0 RP

C
X

L

Empty Slot
Hot add
capable

CXL Host Bridge 1

PCIe RP

PCIe
P

C
Ie

device

CXL Host Bridge 2

CXL Topology
● CXL 2.0 hierarchy appears like

PCIe hierarchy
○ Legacy PCI SW and CXL SW

sees a RP or DSP with
Endpoints below

○ CXL link/interface errors are
signaled to RP, not RCEC

○ Port Control Override registers
prevent legacy PCIe software
from unintentionally resetting
the device and the link

● Interleaving
○ Cross host bridge
○ Switch
○ Device

Interleave

CXL Persistent Memory
Devices

PCI and NVDIMM had a coherent byte addressable
baby… with atomics.

NVDIMM
• Byte

addressable
• Direct

mappable

NVME
• PCIe

configurable
• Hot

swappable

• Persistent memory devices rely on System
Software for provisioning and management

• CXL 2.0 introduces a standard register
interface

• A generic memory device driver simplifies
software enabling

• Architecture Elements
• Defined as number of discoverable Capabilities
• Capabilities includes Device Status and standard

mailboxes, accessed via MMIO registers
• Standardized mailbox commands that cover

errors/health, alerts, partitioning, passphrases etc.
• Allow Vendor specific extensions

PCIe/CXL Bus
Driver

CXL Attached PMEM

CXL 2.0 MEM
Register i/f

CXL Generic
Mem Driver

OS Specific i/fOS I/F

CXL 2.0 Mem I/F

PMEM

Linux Driver Details

Software
Responsibilities

CEDT ACPI0017 Host

ACPI0016

Root Port

USP (Switch)

DSP (Switch)

Endpoint

Endpoint

ACPI0016 ACPI0016

SW Enumerable Components

Linux Drivers

cxl_core cxl_pci

cxl_region

cxl_mem

cxl_port

cxl_acpi

Enumerable
- PCI Class code
- ACPI discovery

Enumerable
- CXL capabilities
- CXL hierarchy

Enumerable
- LSA

Phase 1
Phase 2

bus

regs

mbox

pmem

memdev

cxl_pmem

cxl_core

● Maintains cxl_driver infra
● Interfaces with LIBNVDIMM
● Manages device (sysfs)

○ Services to add devices, ie. cxl_decoder_add()
● IOCTL interface
● Common functionality

○ Mailbox controls (session layer)
○ Register mapping

cxl_pci

● Probed like a typical PCI device
○ { PCI_DEVICE_CLASS((PCI_CLASS_MEMORY_CXL << 8 | CXL_MEMORY_PROGIF), ~0)}

● CXL device manageability
○ Implements mailbox transport (CXL) protocol

● Enumerates CXL device for subsequent driver
○ cxl_mem can’t run until cxl_pci is done

● Attestation/Security/Whatever

CEDT ACPI0017 Host

ACPI0016

Root Port

USP (Switch)

DSP (Switch)

Endpoint

Endpoint

ACPI0016 ACPI0016

cxl_pci

cxl_acpi

● Probed like a typical ACPI device
○ { "ACPI0017", (unsigned long) &native_acpi0017 },

● Platform specific CXL enumeration
○ Mostly specified in UEFI, and CXL

● ACPI0017 starts enumeration of CXL ports
○ CEDT
○ “Root level” ports (platform)
○ Hostbridges and root ports

CEDT ACPI0017 Host

ACPI0016

Root Port

USP (Switch)

DSP (Switch)

Endpoint

Endpoint

ACPI0016 ACPI0016

cxl_acpi

cxl_port

● Ports are created for all components with an “upstream port”
○ Hostbridge
○ Switch
○ Endpoint

● Enumeration and control and control of decoder resources
○ Provides as a service for other drivers

CEDT ACPI0017 Host

ACPI0016

Root Port

USP (Switch)

DSP (Switch)

Endpoint

Endpoint

ACPI0016 ACPI0016

cxl_port

cxl_mem

● connects a device enumerated with cxl_pci to CXL.mem.
○ Implements device functionality not handled by cxl_pci

● “exports” if device is CXL.mem routed and enabled

CEDT ACPI0017 Host

ACPI0016

Root Port

USP (Switch)

DSP (Switch)

Endpoint

Endpoint

ACPI0016 ACPI0016

cxl_mem

Enumeration Timeline

cxl_acpi

cxl_pci

cxl_mem

cxl_port

For each endpoint...

cxl_core

cxl_pci

cxl_mem

cxl_port

Rescan root -> endpoint

Runs
asynchronously

Walks up to find root port.
Won’t be there if cxl_acpi isn’t done.

Finds root port - done
Finds switch - rescan

Neither - fail bind

Volatile vs. Persistent

Persistent Volatile

● BIOS configures all volatile capacities
● BIOS may check PMEM devices, but will not

configure regions.
○ BIOS may configure bootable PMEM

1 Configured by BIOS

● OS initializes persistent regions
● OS may create new persistent regions
● Manages hotplug, error, and reset sequences for

both

2 OS managed

3 Requires CXL.mem
capability

Regions
● Region

○ Interleave set of devices
○ Parameters (IG, HPA, etc)
○ Stored in the Label Storage Area

● Creation
○ Via sysfs ABI
○ Provisioned offline

■ Manufacture time
● Responsibilities

○ Validating region configuration
○ Programming HDM decoders

Region Validation

Verify each device has the
same masked position value

Device[x].RegionLabel.Position >> (CFMWS.HBIG -
Device[x].RegionLabel.IG) & ((2^CFMWS.ENIW) - 1)

1) The ordering of the XHB
CFMWS.InterleaveTargetList[] is
fixed by System Firmware, so
devices must be connected to
the correct host bridge

2) The ratio of the
CFMWS.HBIG to the

RegionLabel.IG determines
how many bits to shift the
position mask to the left.

3) The CFMWS.ENIW
determines how many
bits of the position are
masked

Valid XHB device configuration

Decoder Programming

Linux Interfaces
● Sysfs

○ /sys/bus/cxl/
● IOCTL

○ QUERY
○ SEND
○ Managed command set
○ RAW escape command

● Future
○ Region Creation ABI

QEMU

Review Goals
1) Upstream Linux Driver

a) 0 days of spec release (v5.12)
i) Ease customer adoption

b) Backportable
c) Platform aiding hw implementation and validation

i) Validate the spec for driver usage
2) Reusable past driver bringup

a) infra for regression testing
b) Virtualization

3) Scalable
a) Community Contributions & Fixes

● Hardware
○ No 2.0 FPGAs available
○ 1.1 is limited use and not readily available.

● Internal Simulation
○ Delays/
○ Can’t work with community

● Prior art
○ nfit_test
○ QEMU CCIX patches

Pre-silicon State of the Art

This Photo by Unknown Author is licensed under CC BY-SA

Pre-silicon State of the Art

● Hardware
○ No 2.0 FPGAs available
○ 1.1 is limited use and not readily available.

● Internal Simulation
○ Delays/
○ Can’t work with community

● Prior art
○ nfit_test
○ QEMU CCIX patches

http://commons.wikimedia.org/wiki/file:qemu_logo.svg
https://creativecommons.org/licenses/by-sa/3.0/

CXL Arch Review

CXL 1.1 Device

 CPU CXL1.1 DP

RCiEP
D0 F0

C
X

L
 CXL

DVSEC

RCiEP
Or RPCXL 2.0

Switch

C
X

L

CXL Upstream Switch Port,
Appears as PCIe USP

CXL DSP
Appears as
PCIe DSP

PCIe DSP

CXL 2.0 RP appears
as PCIe RP

PCI
e

C
X

L 2.0
 D

evice

EP
D0 F0

 CXL
DVSEC

CXL 2.0
hierarchies

CXL 1.1
hierarchy

P
C

Ie
device

CXL 2.0 RP

C
X

L

Empty Slot
Hot add
capable

CXL Host Bridge 1

PCIe RP

PCIe
P

C
Ie

device

CXL Host Bridge 2

Q35 Host bridge
(0:0.0)

Endpoint
(10:0.0)

Root Port
(0:7.0)

Root Port
(0:1c.0)

Endpoint
(20:0.0)

Endpoint
(30:0.0)

down

upstream

down

R
C

iE
P

(0:31.0) R
C

iE
P

(0
:3

1.
1)

PCIe in QEMU

What we all know and love

● Single root complex
○ Endpoints
○ Root ports
○ Switches

● All traffic is funneled to the single host bridge
○ QPI/UPI (not modeled)

Host bridge
(n:0.0)

RCiEP RCiEP

Host bridge
(z:0.0)

Root Port RCiEP

Host bridge
(0:0.0)

Root Port Root Port

PCIe ~2014

Options
● Hacks to make Q35 - CXL 2.0

○ Limited potential for interleave scenarios
○ Touching Q35 is risky.
○ Mistakes make everything work incorrectly.

● Replace Q35 with something newer
○ Still Risky.
○ A lot of work for not much gain
○ What good does modeling UPI do for QEMU?
○ Doubtful community wants it (support burden).

Q35 Host bridge
(0:0.0)

Endpoint
(10:0.0)

Root Port
(0:7.0)

Root Port
(0:1c.0)

Endpoint
(20:0.0)

Endpoint
(30:0.0)

down

upstream

down

R
C

iE
P

(0:31.0)

PCI eXpander Bridge

Root Port
(50:0.0)

Root Port
(50:1.0)

Endpoint
(60:0.0)

Endpoint
(90:0.0)

PCI eXpander Bridge (PXB)

● CXL Type 3 device
○ hw/mem/cxl_type3.c

● CXL Root Port
○ hw/pci-bridge/cxl_root_port.c

● CXL PXB
○ hw/pci-bridge/pci_expander_bridge.c

CXL eXpander Bridge

CXL RP
(50:0.0)

CXL RP
(50:1.0)

type3
(60:0.0)

type3
(90:0.0)

● NVDIMM & PCI had a
baby…

● Inherits from both interfaces
● Mailbox handling

libcxl
• IOCTL

ndctl/cxl
cxl_pci.ko
• Mailbox

MMIO
Linux

cxl-mailbox-
utils
• Mailbox

MMIO

QEMU

Spec
Released

Linux
Patches
submitted

QEMU
patches
submitted

November 10th 2020

● QEMU v3 patches sent
○ v4 is ready for submission
○ Community contributions for DOE, CDAT, and SPDM
○ High bar for adding more

■ Nothing exists quite like a CXL memory device
● Volatile + Persistent capacities
● Interleaving at multiple levels

● Linux phase 1 driver merged in 5.12
○ Phase 2 actively being developed.
○ Community contributions for DOE and CDAT

● Spec issues found and the fixes prototyped in QEMU

Future

CXL RUST FTW!!!!!!!!!!!

By Mozilla Foundation, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=40715219

What to do
● Community didn’t adopt

○ Minimal feedback
○ Major reworks for interleave
○ cxl_test came along

● External contributions
■ DOE
■ CDAT
■ SPDM

● Commercial Adoption...

We’re Hiring...

 https://jobs.intel.com/ShowJob/Id/3089754/Linux-Kernel-Development-Engineer

https://jobs.intel.com/ShowJob/Id/3089754/Linux-Kernel-Development-Engineer

• Linux
• DPA mapping (WIP)

• Libnvdimm integration
• Interleave

• Provisioning
• Recognition

• Hotplug
• Hot add
• Managed remove

• Asynchronous mailbox
• Userspace

• Testing

• QEMU
• Better tests
• Upstream/Downstream Ports
• Interleave Support

• Host bridge
• switch

• More firmware commands
• Hotplug support
• Error testing
• Interrupt support
• Memory class device overhaul
• -----------------------
• Make Q35 CXL capable
• CXL type 1 and 2 devices
• CXL 1.1

