
A maintainable, scalable, and 
verifiable SW architectural design 

model for the Linux Kernel

Gabriele Paoloni (Red Hat)
Daniel Bristot de Oliveira (Red Hat)

Work-in-Progress - License: CC-BY-4.0



Disclaimer

Note that this is currently WIP.

No formal results are binding on behalf of ELISA/Linux foundation, nor we make any safety 
claims based on this preliminary report.. 

Work-in-Progress - License: CC-BY-4.0



Agenda

- In-scope and out-of-scope of the presentation

- Possible Functional Safety qualification approaches for Linux

- Proposal: a tailored architectural model

- Proposal applied: ioctl() example

- Integration Tests through Runtime Verification (RV) Monitors 

- Next steps

- Q&A

Work-in-Progress - License: CC-BY-4.0



In/out of the scope of this 
presentation

In Scope:

- Proposal and high level description of an architectural and unit design model suitable to meet 
ISO26262 requirements

- SW Verification methodology associated to the architectural model 

Out of Scope:

- Overall FuSa Qualification Strategy of Linux
- Any safety standard beyond ISO26262

Work-in-Progress - License: CC-BY-4.0



ISO26262 Introduction

• ISO26262 provides three options to qualify pre-existing SW components
• Part 8.12:

• It is a black box approach
• Based on verifying the SW component to meet the allocated top level nominal and safety requirements.
• Although there are not explicit statements about complexity, it is commonly accepted only for simple SW components whose behavior can 

be comprehensively described by the top level specifications;
• Part 6:

• It is a modular and hierarchical white box approach:
• It is suitable to develop and assess SW components of any complexity.

• Part 8.14
• It is a qualification based on the proven in use of the SW component
• Enough statistical data about failures in time of the SW component must be available
• The component configuration and its usage conditions must be identical or have a high degree of commonality with those used to collect the 

statistical failure data
• Part 10.9

• It is a qualification or development approach based on assumptions (assumed safety, nominal requirements and conditions of use). Practically 
speaking it redirects to any acceptable development or qualification approach already defined in other parts of the ISO26262 standard

• It doesn’t provide an additional approach in practice
  

Work-in-Progress - License: CC-BY-4.0

Our Architectural Design approach is 
tailored to leverage both part6 and 
part8.12 together



Part 8.12 Standard Approach

Technical Safety 
Concept

Safety and nominal 
Requirements

Pre-existing code

Requirement based 
Testing

Validation Tests

Amount of collaterals
to maintain

Low

Low-Med

Work-in-Progress - License: CC-BY-4.0

No architecture 
required, just 
high level 
requirements 
description



Part 6 Standard Approach
Technical Safety 

Concept

Safety and nominal 
Requirements

SW Architectural 
Design

Unit Design (single 
functions)

Implementation

Unit Tests

Integration Tests

PlatformTests

Validation Tests

Amount of collaterals
to maintain

Low

High

Work-in-Progress - License: CC-BY-4.0

Detailed 
architecture 
and design 
description 
(usually) down 
to the single 
functions



ISO26262's possible approaches 
for Linux

• Given the current state of ISO26262:
• Linux is too complex to be qualified by ISO26262 Part 8.12 alone
• Linux could be assessed according to Part 6; however, the application of the ISO26262 Part 

6 in Linux is challenging, especially with respect to the amount of work required to meet the 
clauses of unit design, implementation and testing

• It could be qualified according to part 8.14, but only if statistical data is available for the 
specific HW, Configuration and Usage conditions of the target system where Linux is 
deployed.

Work-in-Progress - License: CC-BY-4.0

Out Of Scope for this session



ISO26262 Dilemma:

Linux is too complex 
for Part 8.12

Part 6 is too 
complex for Linux✖ 

Work-in-Progress - License: CC-BY-4.0



Proposal: a Tailored Architectural 
Model

Technical Safety 
Concept

Safety Requirements;
Nominal Requirements

SW Architectural 
Design

Drivers/Subsystems 
Specifications

Pre-existing code

Drivers/Subsystems 
Testing

Integration Tests

PlatformTests

Validation Tests

Amount of collaterals
to maintain

Low

Med

Part6

Part8.12

Work-in-Progress - License: CC-BY-4.0

Linux 
subsystems / 
drivers become 
the “SW Units”

Static and 
dynamic  
interactions 
between 
subsystems / 
drivers



Linux Kernel*

Tailored Architectural Model

• Partition Linux in blocks of SW 
elements

• Define each subsystem/driver (or 
part of it) as a SW unit

• For each SW unit the design specs 
can be defined through natural 
language using the kernel-doc 
headers

• Static and dynamic interactions 
between SW units are described 
using semi-formal or formal notation 

Work-in-Progress - License: CC-BY-4.0

VFSMemory 
Managementscheduler

Watchdog 
Device 
Drivers 

Security 
Subsystem

Arch 
Subsystem 
(e.g. x86)

The interactions between SW units follow part6.7

SW Units design specs become the top level 
requirements according to part8.12

(*): The map of subsystems/drivers is incomplete and is intended to present the concept only  



ISO26262 Dilemma
How to partition the system into SW blocks/units?

 What is the granularity that makes a SW unit simple enough to 
describe its design using kernel-doc headers ?

What is the criteria providing confidence on the right granularity?

Work-in-Progress - License: CC-BY-4.0



Granularity Criteria (proposal)

Part8.12 requires the specification of the SW component under qualification in terms of:

- Known safety requirements;
- Functional requirements;
- Behavior in case of failure
- Resource usage
- Description of required and provided interfaces and shared resources
- Configuration Description

If we are able to specify comprehensively in natural language all of the specs above, the 
level of granularity for the single unit is the right one  

Work-in-Progress - License: CC-BY-4.0



Linux is already partitioned!

• Linux is already partitioned in subsystems by the MAINTAINERS file1

• Use the MAINTAINERS granularity as starting point
• Maintainers are humans!

• It is easy to map the code to the responsible for it
• But we will need the support from them

• If a subsystem or driver is too complex it can be divided further
• it is trivial to maintain a new file defining the partitioning of Linux into our safety units

In summary MAINTAINERS can be a starting point

[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS

Work-in-Progress - License: CC-BY-4.0

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS


Example: watchdog timeout setting

Technical Safety 
Concept

Safety Requirements;
Nominal Requirements

SW Architectural 
Design

Block Specifications
(SW Units)

Pre-existing code

Kernel 
Safety 
Requirement 
ID

Kernel 
Safety 
Requirement 
Title

Kernel Safety Requirement 
Description Kernel Entrypoints

KSR_0004

Watchdog 
Timeout 
Setting

The watchdog subsystem 
shall ensure the WTD timeout 
to be set according to the 
IOCTL input parameter

start_kernel()
SYSCALL_DEFINE3(i
octl, unsigned int, fd, 
unsigned int, cmd, 
unsigned long, arg) 
[calling 
watchdog_ioctl()]

Work-in-Progress - License: CC-BY-4.0

Ref: 
https://docs.google.com/spreadsheets/d/1EbuVvhXo-xZc2aPTf
MgQtPNPDQYtcozs/edit#gid=584539121



Example: watchdog timeout setting

Technical Safety 
Concept

Safety Requirements;
Nominal Requirements

SW Architectural 
Design

Block Specifications
(SW Units)

Pre-existing code
Ref: 
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS?h=v5.12#n6896

To scope the different SW blocks/units supporting ioctl() we used the 
MAINTAINERS file (a starting point).

A SW Unit Block is defined as a group of C and H files

In this deck we focus on the interactions of the SW Unit “FILESYSTEMS (VFS 
and infrastructure)” with the other SW Units/Blocks:
FILESYSTEMS (VFS and infrastructure)
M: Alexander Viro <viro@zeniv.linux.org.uk>
L: linux-fsdevel@vger.kernel.org
S: Maintained
F: fs/*
F: include/linux/fs.h
F: include/linux/fs_types.h
F: include/uapi/linux/fs.h
F: include/uapi/linux/openat2.h
X: fs/io-wq.c
X: fs/io-wq.h
X: fs/io_uring.c

Work-in-Progress - License: CC-BY-4.0



Example: watchdog timeout setting

Technical Safety 
Concept

Safety Requirements;
Nominal Requirements

SW Architectural 
Design

Block Specifications
(SW Units)

Pre-existing code

Arch Ref: 
https://drive.google.com/file/d/13KJiBJ0XN1SA7So0lVawRWe_3_USQTPN/view?usp=sharing

Incoming function Outgoing function

Work-in-Progress - License: CC-BY-4.0

The Communication 
Diagram provides a static 
view of the relationships 
between the target SW Unit 
(here VFS) and the ones it 
communicates with (for this 
use case)



Example: watchdog timeout setting

Technical Safety 
Concept

Safety Requirements;
Nominal Requirements

SW Architectural 
Design

Block Specifications
(SW Units)

Pre-existing code

Arch Ref: 
https://drive.google.com/file/d/13KJiBJ0XN1SA7So0lVawRWe_3_USQTPN/view?usp=sharing

Work-in-Progress - License: CC-BY-4.0

The flow diagram provides a 
runtime view of the events 
and respective interactions 
between the target SW unit 
(VFS) and the others it 
communicates following an 
ioctl() call



Example: watchdog timeout setting

Technical Safety 
Concept

Safety Requirements;
Nominal Requirements

SW Architecture

Block Specifications
(SW Units)

Pre-existing code

Block Specs:
https://docs.google.com/document/d/1BV1dysXPXoUH2_A5dMxZwoXStqni-hVlJKqeLoaeS4I/edit

/*
 * SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, unsigned
 *    long, arg): Kernel entrypoint for the ioctl() syscall.
 * @fd: input file descriptor
 * @cmd: command value
 * @arg: pointer address to user data
 *
 * When ioctl() is invoked, the following steps are 
 * performed:
 * - the file descriptor structure is retrieved from the file descriptor 
 *   table associated with the current task. If the file descriptor table
 *   is shared the associated reference count is incremented.
 *   Failing to retrieve the fd structure results in -EBADF being returned
 * - security_file_ioctl() is called to check if permissions are in place
 *   to execute the ioctl(); if no permissions an error code is returned
 * - if permissions are in place; the file structure associated to the file 
 *   descriptor is retrieved, the unlocked_ioctl() registered callback is 
 *   checked and, if not NULL, it is called.
 *   If the unlocked_ioctl() function pointer is NULL -ENOTTY is returned.
 *   If unlocked_ioctl() succeeds 0 is returned, otherwise the driver
 *   specific error value is returned
 * - the reference counter is decreased, if zero the last reference to the 
 *   file is released (see __fput())
 *
 * Return: on success zero is returned, otherwise one of the appropriate 
 * error codes as per description above 
 *
 * TODO: documentation is missing for the following CMDs: FIOCLEX, 
 * FIONCLEX, FIONBIO, FIOASYNC, FIOQSIZE, FIFREEZE, FITHAM, FS_IOC_FIEMAP, 
 * FIGETBSZ, FICLONE, FICLONERANGE, FIDEDUPERANGE, FIBMAP, FIONREAD, 
 * FS_IOC_RESVSP, FS_IOC_RESVSP64 
 *
 */

Work-in-Progress - License: CC-BY-4.0

The kernel-doc header of 
the ioctl() syscall has be 
rewritten to define the high 
level specs required to do 
SW verification according to 
part8.12  



Example: watchdog timeout setting

Technical Safety 
Concept

Safety Requirements;
Nominal Requirements

SW Architectural 
Design

Block Specifications
(SW Units)

Pre-existing code
code:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/ioctl.c?h=v5.12#n739

SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, unsigned 
long, arg)
{

struct fd f = fdget(fd);
int error;

if (!f.file)
return -EBADF;

error = security_file_ioctl(f.file, cmd, arg);
if (error)

goto out;

error = do_vfs_ioctl(f.file, fd, cmd, arg);
if (error == -ENOIOCTLCMD)

error = vfs_ioctl(f.file, cmd, arg);

out:
fdput(f);
return error;

}

Work-in-Progress - License: CC-BY-4.0



Example: watchdog timeout 
setting

Pre-existing code

Block Testing

Integration Tests

PlatformTests

Validation Tests

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests?h=v5.12

Kernel Selftests can be used to define a comprehensive test 
campaign for the block “FILESYSTEMS (VFS and infrastructure)” wrt 
the ioctl() scenario.

The test specifications can be reviewed against the SW architectural 
models, against the kernel-doc headers specifications and against 
the safety analysis to build confidence on the test campaign 
completeness

Work-in-Progress - License: CC-BY-4.0



Example: watchdog timeout 
setting

Pre-existing code

Block Testing

Integration Tests

PlatformTests

Validation Tests

The SW Architecture diagrams built for the ioctl() 
scenario are automatically implemented in runtime 
verification monitors that can be used in the 
verification phase to make sure the code is behaving as 
modelled

If either the code is wrong or the model is wrong, an 
exception if raised and the test fails

Work-in-Progress - License: CC-BY-4.0



Runtime Verification (RV)

• Runtime Verification (RV) is a lightweight (yet rigorous) formal verification method
• It complements other formal methods (such as model checking and theorem proving)

• RV works by analyzing the trace of the system's actual execution, comparing it against a formal 
specification of the system behavior

Work-in-Progress - License: CC-BY-4.0



Runtime Monitor (RV)

Runtime Verification

Monitor SpecificationSystem Trace

RV 
Reactor

✅

❌

247309: schedule <-worker_thread
247309: preempt_count_add <-schedule
247309: wq_worker_sleeping <-schedule
247309: kthread_data <-wq_worker_sleeping
247310: preempt_count_sub <-schedule
247310: preempt_count_add <-schedule
247310: rcu_note_context_switch <-__sched

Goto fail-safe modeWARN() Fix the doc

Linux Realm Formal Realm

Work-in-Progress - License: CC-BY-4.0



RV in the approach: why do we 
care?

• It closes the loop between the kernel and 
the specification

• Cross verify the system and the 
documentation

• It allows us to "run" the 
documentation in kernel.

• Enable the continuous integration tests
• Perform runtime monitoring of the system

Requirements
SW Architectural 

Design

Runtime Verification 
Monitor

SW Monitor

Blocks 
Specifications

CI/CD to monitor 
changes

Tests to exercise the 
system

Safety Analyses

Work-in-Progress - License: CC-BY-4.0



The tailored architectural approach 
and Runtime Verification

Work-in-Progress - License: CC-BY-4.0



Automata based Runtime 
Verification

• Over the last years, a RV method using automata theory has been refined
• Automata is flexible, intuitive and can be used to specify complex parts of the system:

• See paper: A Thread Synchronization Model for the PREEMPT_RT Linux Kernel (+9k 
states, +21k transitions)

• Build from small specifications (all < 10 states)

Work-in-Progress - License: CC-BY-4.0



Automata based Runtime 
Verification

• It is faster to verify the system online than just saving the trace for later analysis 
• See Paper: Efficient Formal Verification for the Linux Kernel

Work-in-Progress - License: CC-BY-4.0



RV interface and dot2k

• Runtime Verification Interface for the Linux kernel is on submission to LKML
• The Runtime Verification (RV) interface
• https://lore.kernel.org/lkml/cover.1621414942.git.bristot@redhat.com/

• A dot2k tool that automatically generate the runtime monitor code
• The developer only needs to do the instrumentation

• Connect the specification events o the kernel events
• An intuitive interface to control monitors of the system

• It is based on Linux kernel trace interface

Work-in-Progress - License: CC-BY-4.0

https://lore.kernel.org/lkml/cover.1621414942.git.bristot@redhat.com/


Automatic monitor generation

• Automatic code generation is as easy as:
• $ dot2k -d ~/wip.dot -t per_cpu

• See [1]
• The work left to be done is the connection between the model events and the kernel events

• It uses the existing kernel trace infrastructure, an event can be:
• A tracepoint
• A function
• A kprobe...

• See [2] for an example of instrumentation

Work-in-Progress - License: CC-BY-4.0

[1] https://lore.kernel.org/lkml/84ea1e70b846e6fefdaafe4ce5e3c1a5cb49aace.1621414942.git.bristot@redhat.com/

[2] https://lore.kernel.org/lkml/8ffcb3a4c8b55ef63cc02b487aa1c8ad5bf3f800.1621414942.git.bristot@redhat.com/

https://lore.kernel.org/lkml/84ea1e70b846e6fefdaafe4ce5e3c1a5cb49aace.1621414942.git.bristot@redhat.com/
https://lore.kernel.org/lkml/8ffcb3a4c8b55ef63cc02b487aa1c8ad5bf3f800.1621414942.git.bristot@redhat.com/


[root@f32 ~/] # cd /sys/kernel/tracing/rv/
[root@f32 ~/] # echo panic > monitors/wip/reactors
[root@f32 rv] # echo wip > enabled_monitors

 kworker/u8:0-1150    [003] ...2 12430.492850: event_wip: preemptive x preempt_disable -> non_preemptive 
 kworker/u8:0-1150    [003] ...2 12430.492850: event_wip: non_preemptive x preempt_enable -> preemptive (safe)

• Based on ftrace
• Enabling a monitor and instructing it to panic() the system if an exception is found is as 

easy as:
 

  

• Developer can watch the monitor via ftrace

RV user-interface

Work-in-Progress - License: CC-BY-4.0



For further information

• Red Hat Research Quarterly presents the RV modeling and verification approach

•  DE OLIVEIRA, Daniel Bristot; CUCINOTTA, Tommaso; DE OLIVEIRA, Rômulo Silva. *Efficient formal verification 
for the Linux kernel.* In: International Conference on Software Engineering and Formal Methods. Springer, Cham, 
2019. p. 315-332.

•  DE OLIVEIRA, Daniel B.; DE OLIVEIRA, Rômulo S.; CUCINOTTA, Tommaso. *A thread  synchronization model 
for the PREEMPT_RT Linux kernel.* Journal of Systems Architecture, 2020, 107: 101729.

• Formal Verification made easy and fast (ELCE 2019)

• https://www.youtube.com/watch?v=BfTuEHafNgg

Work-in-Progress - License: CC-BY-4.0

https://www.youtube.com/watch?v=BfTuEHafNgg


Pain Points and Next Steps

Pain Points

- Communication diagrams between subsystems/drivers can be supported by static analysis tools of the code (TODO: add 

call-tree link)

- Dynamic diagrams baseline can be generate by tracing the interfaces between subsystems once the communication diagram is 

complete (cat sys/kernel/tracing/trace)

- Can an Automata starting baseline be generated out of tracepoints and static graphs 

- IMPORTANT: human review and refinement of the automata starting baseline is mandatory !!!!!!!
- Kernel-doc headers must be written mandatorily for the interfaces between subsystems

Next Steps

- Develop e refine tools augmenting and supporting the generation of SW architectural models starting from the code

- Continue the development of the Runtime Verification Interface

- Go high scale by pushing the tools and engaging with maintainers

Work-in-Progress - License: CC-BY-4.0



Questions?


