

rustc_codegen_gcc: A gcc codegen for the Rust compiler

 https://github.com/rust-lang/rustc_codegen_gcc

● rustc is based on LLVM.
● rustc provides an API for codegen.
● rustc can load a codegen dynamic

library.
● libgccjit can be plugged to rustc via

this mechanism.
● PR for inclusion in rustc in review.

A gcc codegen for Rust

 https://github.com/rust-lang/rustc_codegen_gcc

Why do we need this?
● Rust is becoming more and more popular.
● Support more architectures.
● Rust for Linux.
● Embedded programming.
● Some projects (Firefox, librsvg) won't run on

architectures not supported by Rust.

 https://github.com/rust-lang/rustc_codegen_gcc

What is implemented?
● Basic and aggregate types.
● Operations, local and global variables, constants, functions, basic blocks.
● Atomics.
● Thread-Local Storage.
● Inline assembly.
● Many intrinsics.
● Metadata.
● Setting optimization level.
● Support in GodBolt, the Compiler Explorer.

 https://github.com/rust-lang/rustc_codegen_gcc

Rust Test Suite
● libcore tests pass.
● Most of the UI tests pass:
test result: FAILED. 4326 passed; 102
failed; 48 ignored; 0 measured; 0
filtered out; finished in 1793.45s

 https://github.com/rust-lang/rustc_codegen_gcc

Experiment: running Rust
code on m68k

● Still early stage, but proves that it's possible to run
Rust on platforms unsupported by LLVM.

 https://github.com/rust-lang/rustc_codegen_gcc

Experiment: running Rust
code on m68k

 https://github.com/rust-lang/rustc_codegen_gcc

What needs to be done?
● Some attributes (#[inline], …).
● Debug info.
● Fix bad code generation.
● 128-bit (and non-power of two) integers on platforms not supporting them.
● Add support for new architectures in libraries (libc, object, …) and rustc.
● LTO.
● SIMD.
● Unwinding.

 https://github.com/rust-lang/rustc_codegen_gcc

What needs to be done?
● GCC constraint code.
● Fix initialization of global variables.
● Target features (to detect what is supported in an

architecture, like SIMD).
● Poison value.
● Handle alignment and flags (like volatile).
● Packed structs.

 https://github.com/rust-lang/rustc_codegen_gcc

What could be improved?
● rustc API:

– Rvalue vs lvalue.
– Landing pads (unwinding).
– Handling of basic blocks (mostly an issue for intrinsics that don't exist in

gcc).
– Function vs value.
– AST-based IR vs instruction-based IR:

● Example: dereference of pointers in wrong basic block.
– Separate aggregate operations (structs, arrays, vectors).

 https://github.com/rust-lang/rustc_codegen_gcc

What could be improved?
● libgccjit:

– Types introspection (with attributes).
● Compilation time.
● Missed optimizations.
● Binary size.

 https://github.com/rust-lang/rustc_codegen_gcc

Patches to libgccjit
● Handle truncation and extension for casts (merged).
● Initialization of global variable (WIP).
● Add support for setting the link section of global variables.
● Add support for sized integer types, including 128-bit integers.
● Add support for TLS variables.
● Add support for types used by atomic builtins.
● Add some reflection functions.
● Implement bitcast.
● Add support for register variables.

 https://github.com/rust-lang/rustc_codegen_gcc

Potential issues
● Distribution of libgccjit.so (gcc binary targets a particular

architecture).
● Requires a patched gcc until the patches are merged.
● Different ABI on some platforms.
● rustc --target=sh2 that just works.
● Backporting to older gcc (for the Linux kernel).
● Running the Rust test suite on new architectures (CI, crater runs).
● Target triples.

 https://github.com/rust-lang/rustc_codegen_gcc

Questions / discussion

 https://github.com/rust-lang/rustc_codegen_gcc

How you can help
● rustc_codegen_gcc:
1) Run the tests locally.
2) Choose a test that fails.
3) Investigate why it fails.
4) Fix the problem.
● Crates:

– object
– libc

● Test this project:
– On new platforms.
– To compare the assembly with LLVM.

● Good first issue

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

