
io_uring: BPF controlled I/O
Linux Plumbers 2021

Pavel Begunkov
asml.silence at gmail.com

io_uring: introduction

2

Lots of operations

enum {
IORING_OP_NOP,
IORING_OP_READV,
IORING_OP_WRITEV,
IORING_OP_FSYNC,
IORING_OP_READ_FIXED,
IORING_OP_WRITE_FIXED,
IORING_OP_POLL_ADD,
IORING_OP_POLL_REMOVE,
IORING_OP_SYNC_FILE_RANGE,
IORING_OP_SENDMSG,
IORING_OP_RECVMSG,
IORING_OP_TIMEOUT,
IORING_OP_TIMEOUT_REMOVE,
IORING_OP_ACCEPT,
IORING_OP_ASYNC_CANCEL,
IORING_OP_LINK_TIMEOUT,
IORING_OP_CONNECT,
IORING_OP_FALLOCATE,

 ...

 ...
IORING_OP_OPENAT,
IORING_OP_CLOSE,
IORING_OP_FILES_UPDATE,
IORING_OP_STATX,
IORING_OP_READ,
IORING_OP_WRITE,
IORING_OP_FADVISE,
IORING_OP_MADVISE,
IORING_OP_SEND,
IORING_OP_RECV,
IORING_OP_OPENAT2,
IORING_OP_EPOLL_CTL,
IORING_OP_SPLICE,
IORING_OP_PROVIDE_BUFFERS,
IORING_OP_REMOVE_BUFFERS,
IORING_OP_TEE,
IORING_OP_SHUTDOWN,
IORING_OP_RENAMEAT,
IORING_OP_UNLINKAT,
IORING_OP_MKDIRAT,
IORING_OP_SYMLINKAT,
IORING_OP_LINKAT,

};
3

Features

• SQPOLL for syscall-less submission
• IOPOLL for beating performance records
• Registered resources with fast updates

- IORING_REGISTER_FILES: optimised file refcounting
- IORING_REGISTER_BUFFERS: eliminates page refcounting, no page table walking, etc.
- dynamic fast updates: no more full io_uring quiesce

• IOSQE_IO_LINK: request links for execution ordering
• IORING_FEAT_FAST_POLL: automatic poll fallback, no need for epoll
• IO-WQ: internal thread pool, when nothing else works
• multi-shot requests, e.g. poll generating multiple CQEs
• executors (IO-WQ, SQPOLL) sharing
• and more ...

4

Execution flow
First try nowait: IOCB_NOWAIT, LOOKUP_CACHED, etc.
• might just complete, e.g. if data is already there
• O_DIRECT goes async, -EIOCBQUEUED
• added to a waitqueue, e.g. poll requests

Try async buffered read, see FMODE_BUF_RASYNC

Internally try polling if supported, see IORING_FEAT_FAST_POLL
• once fires, goto nowait attempts again

Any other way to go genuinely async; will be more in the future

Fall back to a thread pool, slower but often necessary

5

Misconception debunking

io_uring is not "just a worker pool"
• worker threads is a slower path

io_uring is not I/O Completion Ports (IOCP)
• ... Microsoft is now developing a io_uring for Windows

io_uring is not only about syscall elimination/reduction
• provides asynchrony
• easy parallelism
• provides a state to base optimisations on, e.g. registerested files

6

The problem

7

By Natascha Eibl - https://meltdownattack.com/, CC0,
https://commons.wikimedia.org/w/index.php?curid=65233480
https://commons.wikimedia.org/w/index.php?curid=65235937

syscall overhead
Vulnerability mitigations are expensive, and so are syscalls
• cost varies with CPU and enabled mitigations

Overhead for syscalls in a tight loop with little work can take 20-50%
(apparently, tested CPU is the worst case)

8

copy by 4KB at a time
cp_4kb ./file /dev/zero

 29.47% busybox [kernel.vmlinux] [k] syscall_exit_to_user_mode
 12.68% busybox [kernel.vmlinux] [k] entry_SYSCALL_64
 12.49% busybox [kernel.vmlinux] [k] syscall_return_via_sysret
 0.52% busybox [kernel.vmlinux] [k] do_syscall_64
 ...

9

mitigations enabled
nop requests, batch 32
fio/t/io_uring -d32 -s32 -c32 -N1

 16.41% io_uring [kernel.vmlinux] [k] io_submit_sqe
 14.78% io_uring [kernel.vmlinux] [k] syscall_exit_to_user_mode
 10.70% io_uring [kernel.vmlinux] [k] __io_submit_flush_completions
 10.17% io_uring [kernel.vmlinux] [k] io_submit_sqes
 9.78% io_uring [kernel.vmlinux] [k] io_issue_sqe
 7.61% io_uring [kernel.vmlinux] [k] __io_queue_sqe
 7.28% io_uring [kernel.vmlinux] [k] io_req_free_batch
 5.07% io_uring [kernel.vmlinux] [k] entry_SYSCALL_64
 4.79% io_uring [kernel.vmlinux] [k] syscall_return_via_sysret
 4.29% io_uring io_uring [.] submitter_fn
 2.75% io_uring [kernel.vmlinux] [k] io_alloc_req
 ...

10

mitigations enabled
Null block device, “realistic batching” 4 requests at a time
modprobe null_blk no_sched=1 irqmode=1 completion_nsec=0 submit_queues=16
fio/t/io_uring -d4 -s4 -c4 -p1 -B1 -F1 -b512 /dev/nullb0

 9.01% io_uring [kernel.vmlinux] [k] syscall_exit_to_user_mode
 4.87% io_uring [kernel.vmlinux] [k] blkdev_direct_IO
 3.27% io_uring [kernel.vmlinux] [k] entry_SYSCALL_64
 2.92% io_uring [kernel.vmlinux] [k] syscall_return_via_sysret
 2.89% io_uring [kernel.vmlinux] [k] kmem_cache_free
 2.74% io_uring [null_blk] [k] null_queue_rq
 2.68% io_uring io_uring [.] submitter_fn
 2.31% io_uring [kernel.vmlinux] [k] blkdev_bio_end_io
 2.27% io_uring [kernel.vmlinux] [k] io_issue_sqe
 2.19% io_uring [kernel.vmlinux] [k] io_do_iopoll
 2.12% io_uring [kernel.vmlinux] [k] kmem_cache_alloc
 ...

Sweet spot for optimisation. How about SQPOLL?
• still needs userspace to process completions
• takes a CPU core; high CPU consumption
• cache bouncing

BPF is there to help! Can also help latency

11

Requirements

Flexibility: what capabilities BPF has to have?
• submitting new requests
• accessing CQEs, multiple if needed
• poking into userspace memory

Low overhead
• Traditionally we’ve optimised batched submission more
• BPF is expected to have a lower batch ratio

12

Idea 1: let’s add a callback to each
request and run it on completion

• needs hooks in generic paths, non-zero cost
• limits control over execution context
• can’t do waiting and other async stuff
• BPF needs context, would need allocation
• looks horrible ...

13

struct io_uring_sqe {

 ...

 u32 callback_id;

};

int io_init_req(struct io_uring_sqe *sqe)

{

 if (sqe->callback_id)

 req->bpf_cb = get_bpf(sqe->callback_id);

 ...

}

void io_req_complete(struct io_kiocb *req, long res)

{a

 if (req->callback)

 req->bpf_cb(req, res);

 ...

}

New io_uring request type: IORING_OP_BPF
No extra per request overhead, everything is enclosed in opcode handlers.
And we can use generic io_uring infrastructure:
• locking and better control of execution context
• completion and other batching
• space in the internal request struct, i.e. struct io_kiocb
• can be linked to other requests
• possible to execute multiple times, i.e. keeping a BPF request alive

The downside is that extra requests are not free, there is a cost to
that, but we can work with it.

14

Feeding BPF completions

15

BPF needs feedback from other
requests.
The first idea: just use links and
pass a CQE of the previous request
to BPF!
• ugly again
• bound to linking by design
• no way to pass multiple CQEs
• extra overhead for non-BPF code

Multiple CQs

16

Introduce multiple CQs:
• sqe->cq_idx, each request

specifies to which CQ its
completion goes

• BPF can emit and consume CQEs
to / from any CQ

• Can wait
• Synchronisation is up to the

userspace / BPF

17

Pros:
• Can pass multiple CQEs
• CQs can be waited on (including by BPF)
• Extra way of communication:

posting to a CQ

Example:
Each BPF request has its own CQ. It keeps a
number of operations in-flight and posts to
the main CQ when it’s done with the job.

What about poking into the normal userspace memory?
BPF subsystem already has an answer: sleepable BPF programs

It does what it sounds like, allows BPF programs to sleep.
• reading userspace memory is already there
• writing is trivial to add
• a big deal for io_uring as submission might need to sleep
• bpf_copy_[from,to]_user() + io_uring performance is yet to be measured

There are also BPF maps / arrays and other infrastructure provided by BPF
• not everything is supported with sleepable programs, may get lifted (if not already)

18

Overhead
There can be O(N) BPF requests, important to keep overhead low

A lot of work has been done! Highlights:
• persistent submission state, request caching
• infrastructure around task_work and execution batching
• task_struct referencing and other overhead amortisation
• removing request refcounting
• completion batching
• native io-wq workers (planned to use)
• upcoming IOSQE_CQE_SKIP_SUCCESS

• just cutting the number of instructions required per request ...

QD1 should be in a good shape as well …
… apart from syscalling and __do_sys_io_uring_enter

19

API: program registration

20

enum {

 ...

 IORING_REGISTER_BPF,

 IORING_UNREGISTER_BPF,

};

int bpf_prog_fds[NR_PROGS] = {...};

// BPF registration can be made optional

ret = __sys_io_uring_register(ring->ring_fd, IORING_REGISTER_BPF, bpf_prog_fds, NR_PROGS);

// unregister programs, inflicts full quiesce

ret = __sys_io_uring_register(ring->ring_fd, IORING_UNREGISTER_BPF, 0, 0);

// or cleaned up automatically on ring exit

API is not set in stone yet, can and will change

API: BPF request

21

enum {

 ...

 IORING_OP_BPF,

};

struct io_uring_sqe *sqe = ...;

memset(sqe, 0, sizeof(sqe));

sqe->opcode = IORING_OP_BPF;

sqe->off = bpf_program_idx;

// generic, for all request types

sqe->user_data = (u64)data_ptr; // returned back in CQE. Also, BPF has access to its user_data

sqe->cq_idx = completion_queue_idx; // CQ index to post CQE to

sqe->flags = sqe_flags; // combination of IOSQE_*, as usual

API: BPF definitions

22

enum { // Return values for io_uring BPF programs

 IORING_BPF_OK = 0, // complete request

 IORING_BPF_WAIT, // wait on CQ for completions

};

struct io_uring_bpf_ctx { // BPF io_uring context

 __u64 user_data; // sqe->user_data specified at submission

 __u32 wait_nr; // number of requests to wait for

 __u32 wait_idx; // CQ index to wait on

};

// Returns the number of submitted requests or a negative error if failed.

long (*bpf_io_uring_submit)(void *ctx, void *sqe, __u32 size);

// Returns 0 on success, -ENOMEM if the CQE has been dropped.

long (*bpf_io_uring_emit_cqe)(void *ctx, __u32 cq_idx, __u64 user_data, __s32 res, __u32 cflags);

// Returns 0 on success, -ENOENT if there are no CQEs in the CQ.

long (*bpf_io_uring_reap_cqe)(void *ctx, __u32 cq_idx, struct io_uring_cqe *cqe, __u32 size);

API: libbpf example

23

SEC("iouring") // io_uring BPF program

int bpf_program_name(struct io_uring_bpf_ctx *ctx) {

 struct io_uring_cqe cqe;

 ret = bpf_io_uring_reap_cqe(ctx, cq_idx, &cqe, sizeof(cqe));

 struct io_uring_sqe sqe;

 io_uring_prep_nop(&sqe); // helper copy-pasted from liburing

 sqe.user_data = 42;

 ret = bpf_io_uring_submit(ctx, &sqe, sizeof(sqe));

 u64 data, *uptr = (u64 *)ctx->user_data;

 bpf_copy_from_user(&data, sizeof(data), uptr);

 if (exit) return IORING_BPF_OK;

 ctx->wait_idx = cq_idx_to_wait;

 ctx->wait_nr = nr_cqes_to_wait;

 return IORING_BPF_WAIT; // wait for @nr_cqes_to_wait CQEs in @cq_idx_to_wait CQ

}

API: ideas?

• make BPF registration optional
• extra data to pass in SQE, e.g. maps or shared memory
• more convenient bpf_copy_[from,to]_user(), e.g. plain pointers
• other synchronisation, e.g. futex
• batched version of bpf_io_uring_submit()
• anything missing?

24

Testing
Not yet conclusive. Test case:
• Copy a file by 4KB at a time into /dev/zero, buffered and fully cached

25

Mitigations Test case Time (ms)

ON read(2)/write(2) 1350

ON io_uring, simple QD=1 1630

any io_uring + BPF 810

OFF read(2)/write(2) 550

However, let’s take another CPU:

Mitigations Test case Time (ms)

ON read(2)/write(2) 1320

any io_uring + BPF 1250

Applicability

26

Applicability: shouldn’t be of interest if batching is naturally “high
enough”.
High queue depth is not always possible and/or desirable.
• batching hurts latency
• may care about ordering, e.g. TCP sockets.
• slow devices and memory/responsiveness restrictions

Use cases to try:
• databases / engines, caching systems
• Intelligent file-file splicing, e.g. based on data
• broadcast / collect
• mentioned that may be of use to QUIC
• explore applicability to FUSE
• ideas are welcome

Next steps
Need to explore more test cases …

… and more “interesting” tests.

Each new case requires some tuning and optimisation.
Upside: also usually benefits non-BPF io_uring.

Have to solve some slight performance regressions from multi-CQ
• good chance extra CQs will only be visible to BPF

TODO: selftests, bpf_link, API changes

27

Resources

28

Kernel
https://github.com/isilence/linux.git bpf_v3

Liburing, see <liburing>/examples/bpf/*
https://github.com/isilence/liburing.git bpf_v3

io_uring mailing list
io-uring@vger.kernel.org

io_uring guide
https://kernel.dk/io_uring.pdf

benchmark, <fio>/t/io_uring.c
git://git.kernel.dk/fio

https://github.com/isilence/linux.git
https://github.com/isilence/liburing.git
https://kernel.dk/io_uring.pdf

