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lo_uring: introduction
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Lots of operations

TORING_OP_OPENAT,
TORING_OP_CLOSE,
TORING_OP_FILES_UPDATE,

enum { TORING_OP_STATX,
TORING_OP_NOP, IORING_OP_READ,
IORING_OP_READV, TORING_OP_WRITE,
IORING_OP_WRITEV, IORING_OP_FADVISE,
TIORING_OP_FSYNC, IORING_OP_MADVISE,
TIORING_OP_READ_FIXED, TORING_OP_SEND,
TIORING_OP_WRITE_FIXED, TORING_OP_RECV,
TORING_OP_POLL_ADD, TORING_OP_OPENAT2,
TIORING_OP_POLL_REMOVE, TORING_OP_EPOLL_CTL,
TORING_OP_SYNC_FILE_RANGE, TORING_OP_SPLICE,
TORING_OP_SENDMSG, IORING_OP_PROVIDE_BUFFERS,
IORING_OP_RECVMSG, IORING_OP_REMOVE_BUFFERS,
TORING_OP_TIMEOUT, IORING_OP_TEE,
TIORING_OP_TIMEOUT_REMOVE, TORING_OP_SHUTDOWN,
TIORING_OP_ACCEPT, IORING_OP_RENAMEAT,
TORING_OP_ASYNC_CANCEL, TORING_OP_UNLINKAT,
TORING_OP_LINK_TIMEOUT, TORING_OP_MKDIRAT,
IORING_OP_CONNECT, IORING_OP_SYMLINKAT,
TIORING_OP_FALLOCATE, TORING_OP_LINKAT,



Features

- SQPOLL for syscall-less submission
- IOPOLL for beating performance records
- Registered resources with fast updates
- IORING_REGISTER_FILES: optimised file refcounting
- IORING_REGISTER_BUFFERS: eliminates page refcounting, no page table walking, etc.
- dynamic fast updates: no more full io_uring quiesce
- TOSQE_IO_LINK: request links for execution ordering
- TORING_FEAT_FAST_POLL: automatic poll fallback, no need for epoll
- I0-WQ: internal thread pool, when nothing else works
- multi-shot requests, e.g. poll generating multiple CQEs
- executors (I10-WQ, SQPOLL) sharing
- and more ...



Execution flow

First try nowait: IOCB_NOWAIT, LOOKUP_CACHED, etc.
- might just complete, e.q. if datais already there

- O_DIRECT goes async, -EIOCBQUEUED

- added to a waitqueue, e.g. poll requests

Try async buffered read, see FMODE_BUF_RASYNC

Internally try polling if supported, see IORING_FEAT_FAST_POLL
- once fires, goto nowait attempts again

Any other way to go genuinely async; will be more in the future

Fall back to a thread pool, slower but often necessary



Misconception debunking

lo_uring is not "just a worker pool”

- worker threads is a slower path

lo_uring is not I/O Completion Ports (IOCP)

* ... Microsoftis now developing a io_uring for Windows

lo_uring is not only about syscall elimination/reduction

- provides asynchrony
- easy parallelism
- provides a state to base optimisations on, e.g. registerested files



The problem
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syscall overhead

Vulnerability mitigations are expensive, and so are syscalls
- cost varies with CPU and enabled mitigations

Overhead for syscalls in a tight loop with little work can take 20-50%
(apparently, tested CPU is the worst case)

# copy by 4KB at a time
# cp_4kb ./file /dev/zero

29.47% busybox [kernel.vmlinux]
12.68% busybox [kernel.vmlinux]
12.49% busybox [kernel.vmlinux]
0.52% busybox [kernel.vmlinux]

syscall_exit_to_user_mode
entry_SYSCALL_64
syscall_return_via_sysret
do_syscall_64
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# mitigations enabled

# nop requests,

batch 32

# fio/t/io_uring -d32 -s32 -c32 -N1
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io_submit_sqge
syscall_exit_to_user_mode
__io_submit_flush_completions
io_submit_sqges
10_1issue_sqe
__lo_queue_sge
io_req_free_batch
entry_SYSCALL_64
syscall_return_via_sysret
submitter_fn

io_alloc_req



# mitigations enabled

# Null block device, “realistic batching” 4 requests at a time

# modprobe null_blk no_sched=1 irgmode=1 completion_nsec=0 submit_queues=16
# fio/t/io_uring -d4 -s4 -c4 -p1 -B1 -F1 -b512 /dev/nullb@

.01% io_uring [kernel.vmlinux]
.87% io_uring [kernel.vmlinux]

syscall_exit_to_user_mode
blkdev_direct_IO
entry_SYSCALL_64
syscall_return_via_sysret
kmem_cache_free
null_queue_rq

.27% io_uring [kernel.vmlinux]
.92% io_uring [kernel.vmlinux]
.89% idio_uring [kernel.vmlinux]
.74% io_uring [null_blk]

.68% io_uring io_uring [ .] submitter_fn

' blkdev_bio_end_io
10_issue_sqge
io_do_iopoll
kmem_cache_alloc

A XN X X X X

.31% dio_uring [kernel.vmlinux]
.27% io_uring [kernel.vmlinux]
.19% io_uring [kernel.vmlinux]
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Sweet spot for optimisation. How about SQPOLL?
- still needs userspace to process completions

- takes a CPU core; high CPU consumption

» cache bouncing

BPF is there to help! Can also help latency
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Requirements

Flexibility: what capabilities BPF has to have?
- submitting new requests

- accessing CQEs, multiple if needed

- poking into userspace memory

Low overhead
- Traditionally we’ve optimised batched submission more
- BPF is expected to have a lower batch ratio
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struct io uring sqge {

u32 callback id;

Idea 1: let’s add a callback to each .
request and run it on completion

int io_init req(struct 1o uring sge *sge)
{
1f (sge->callback id)
- needs hooks in generic paths, non-zero cost req->bpf cb - get bpf (sqe->callback id);

* |limits control over execution context
- can’t do waiting and other async stuff
° BPF needs Context, Would need a”ocation volid io req complete (struct io kiocb *req, long res)

{a

- looks horrible ... if (req->callback)

req->bpf cb(req, res);



New io_uring request type: IORING_OP_BPF

No extra per request overhead, everything is enclosed in opcode handlers.
And we can use generic io_uring infrastructure:

- locking and better control of execution context

- completion and other batching

- space in the internal request struct, i.e. structio_kiocb

- can be linked to other requests

- possible to execute multiple times, i.e. keeping a BPF request alive

The downside is that extra requests are not free, there is a cost to
that, but we can work with it.
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Feeding BPF completions

BPF needs feedback from other
requests.

The first idea: just use links and
pass a CQE of the previous request
to BPF!

- ugly again

- bound to linking by design

- no way to pass multiple CQEs

- extra overhead for non-BPF code

Completion Queue

struct io_uring_cqge

Request 1 —— Request2 —

struct io_uring_cqe
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Multiple CQs

Introduce multiple CQs:

- sge->cq_idx, each request
specifies to which CQ its
completion goes

- BPF can emit and consume CQEs

Submission Queue

to/fromany CQ

- Can wait

» Synchronisationis up to the
userspace /| BPF

Kernel

User space

----------------------

Completion Queues
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Pros:

- Can pass multiple CQEs
- CQs can be waited on (including by BPF)
- Extra way of communication:

posting toa CQ

Example:

Each BPF request has its own CQ. It keeps a
number of operations in-flight and posts to
the main CQ when it’s done with the job.

Submission Queue

User space

Completion Queues
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What about poking into the normal userspace memory?
BPF subsystem already has an answer: sleepable BPF programs

It does what it sounds like, allows BPF programs to sleep.

- reading userspace memory is already there

- writing is trivial to add

- a big deal forio_uring as submission might need to sleep

* bpf_copy_[from, to]_user() +io_uring performance is yet to be measured

There are also BPF maps / arrays and other infrastructure provided by BPF
- not everything is supported with sleepable programs, may get lifted (if not already)
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Overhead

There can be O(N) BPF requests, important to keep overhead low

A lot of work has been done! Highlights:

- persistent submission state, request caching

- infrastructure around task_work and execution batching
- task_struct referencing and other overhead amortisation
- removing request refcounting

- completion batching

- native io-wq workers (planned to use)

« upcoming IOSQE_CQE_SKIP_SUCCESS

- just cutting the number of instructions required per request ...

QD1 should be in a good shape as well ...

... apart from syscalling and __do_sys_io_uring_enter
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API: program registration

APl is not set in stone yet, can and will change

enum {

IORING REGISTER BPF,
IORING UNREGISTER BPF,

b g

int bpf prog fds[NR PROGS] = {...};
// BPF registration can be made optional

ret = _ sys io uring register (ring->ring fd, IORING REGISTER BPF, bpf prog fds, NR PROGS) ;

// unregister programs, inflicts full quiesce
ret = _ sys io uring register (ring->ring fd, IORING UNREGISTER BPF, 0, 0);

// or cleaned up automatically on ring exit
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APIl: BPF request

enum {

IORING OP BPF,
[

struct 1o uring sge *sge = ...;

memset (sge, 0, sizeof (sqge));

sge->opcode = IORING OP BPF;

sqge->off = bpf program idx;

// generic, for all request types

sge->user data = (u64)data ptr; // returned back in CQE. Also, BPF has access to its user data
sge->cq idx = completion queue idx; // CQ index to post CQE to

sge->flags = sqge flags; // combination of IOSQE *, as usual
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APIl: BPF definitions

enum { // Return values for io uring BPF programs
IORING BPF OK = 0, // complete request
IORING BPF WAIT, // wait on CQ for completions

¥

struct io uring bpf ctx { // BPF io uring context

__u64  user data; // sge->user data specified at submission
_ u32 wait nr; // number of requests to wait for
_u32 wait idx; // CQ index to wait on

¥

// Returns the number of submitted requests or a negative error 1if failed.

long (*bpf 10 uring submit) (void *ctx, void *sge,  u32 size);

// Returns 0 on success, —-ENOMEM if the CQE has been dropped.

long (*bpf io uring emit cqge) (void *ctx,  u32 cg idx,  ub4 user data, s32 res,  u32 cflags);
// Returns 0 on success, —-ENOENT if there are no CQOEs in the CQ.

long (*bpf io uring reap cqge) (void *ctx,  u32 cg idx, struct io uring cge *cge,  u32 size);



API: libbpf example

SEC ("iouring") // io uring BPF program
int bpf program name (struct io uring bpf ctx *ctx) {
struct io uring cge cqge;

ret = bpf io uring reap cqe(ctx, cg idx, &cqge, sizeof (cge));

struct 1o uring sge sqge;
io uring prep nop (&sqe); // helper copy-pasted from liburing
sge.user data = 42;

ret = bpf io uring submit (ctx, &sge, sizeof (sge));

uo4 data, *uptr = (u6b4d *)ctx->user data;

bpf copy from user (&data, sizeof (data), uptr);

1f (exit) return IORING BPF OK;
ctx->wailt 1dx = cg 1dx to wailt;
ctx->walt nr = nr cges to wailt;

return IORING BPF WAIT; // wait for @nr cges to wait CQEs in @cg idx to wait CQ



API: ideas?

- make BPF registration optional

- extra data to passin SQE, e.g. maps or shared memory

- more convenient bpf_copy_[from,to]_user(), e.g. plain pointers
- other synchronisation, e.g. futex

- batched version of bpf_io_uring_submit()

- anything missing?
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Testing

Not yet conclusive. Test case:

- Copy afile by 4KB at a time into /dev/zero, buffered and fully cached

Mitigations Test case Time (ms)
ON read(2)/write(2) 1350

ON io_uring, simple QD=1 1630

any io_uring + BPF 810

OFF read(2)/write(2) 550
However, let’s take another CPU:

Mitigations Test case Time (ms)
ON read(2)/write(2) 1320

any io_uring + BPF 12560
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Applicability

Applicability: shouldn’t be of interest if batching is naturally “high
enough”.

High queue depth is not always possible and/or desirable.

- batching hurts latency

- may care about ordering, e.g. TCP sockets.

- slow devices and memory/responsiveness restrictions

Use cases to try:

- databases / engines, caching systems

- Intelligent file-file splicing, e.g. based on data
- broadcast / collect

- mentioned that may be of use to QUIC

- explore applicability to FUSE

- Ideas are welcome
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Next steps

Need to explore more test cases...
... and more “interesting” tests.

Each new case requires some tuning and optimisation.
Upside: also usually benefits non-BPF io_uring.

Have to solve some slight performance regressions from multi-CQ
- good chance extra CQs will only be visible to BPF

TODO: selftests, bpf_link, APl changes
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Resources

Kernel
https://github.com/isilence/linux.git bpf_v3

Liburing, see <liburing>/examples/bpf/*
https://github.com/isilence/liburing.git bpf_v3

io_uring mailing list
lo-uring@vger.kernel.org

io_uring guide
https://kernel.dk/io uring.pdf

benchmark, <fio>/t/io_uring.c
git://git.kernel.dk/fio
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