lo_uring: BPF controlled 1/O

Linux Plumbers 2021

Pavel Begunkov
asml.silence at gmail.com

FACEBOOK O®©C(C

lo_uring: introduction

User space

— tail €

Submission Queue

«— head <

> head—

Kernel

> tail —

Completion Queue

Lots of operations

TORING_OP_OPENAT,
TORING_OP_CLOSE,
TORING_OP_FILES_UPDATE,

enum { TORING_OP_STATX,
TORING_OP_NOP, IORING_OP_READ,
IORING_OP_READV, TORING_OP_WRITE,
IORING_OP_WRITEV, IORING_OP_FADVISE,
TIORING_OP_FSYNC, IORING_OP_MADVISE,
TIORING_OP_READ_FIXED, TORING_OP_SEND,
TIORING_OP_WRITE_FIXED, TORING_OP_RECV,
TORING_OP_POLL_ADD, TORING_OP_OPENAT2,
TIORING_OP_POLL_REMOVE, TORING_OP_EPOLL_CTL,
TORING_OP_SYNC_FILE_RANGE, TORING_OP_SPLICE,
TORING_OP_SENDMSG, IORING_OP_PROVIDE_BUFFERS,
IORING_OP_RECVMSG, IORING_OP_REMOVE_BUFFERS,
TORING_OP_TIMEOUT, IORING_OP_TEE,
TIORING_OP_TIMEOUT_REMOVE, TORING_OP_SHUTDOWN,
TIORING_OP_ACCEPT, IORING_OP_RENAMEAT,
TORING_OP_ASYNC_CANCEL, TORING_OP_UNLINKAT,
TORING_OP_LINK_TIMEOUT, TORING_OP_MKDIRAT,
IORING_OP_CONNECT, IORING_OP_SYMLINKAT,
TIORING_OP_FALLOCATE, TORING_OP_LINKAT,

Features

- SQPOLL for syscall-less submission
- IOPOLL for beating performance records
- Registered resources with fast updates
- IORING_REGISTER_FILES: optimised file refcounting
- IORING_REGISTER_BUFFERS: eliminates page refcounting, no page table walking, etc.
- dynamic fast updates: no more full io_uring quiesce
- TOSQE_IO_LINK: request links for execution ordering
- TORING_FEAT_FAST_POLL: automatic poll fallback, no need for epoll
- I0-WQ: internal thread pool, when nothing else works
- multi-shot requests, e.g. poll generating multiple CQEs
- executors (I10-WQ, SQPOLL) sharing
- and more ...

Execution flow

First try nowait: IOCB_NOWAIT, LOOKUP_CACHED, etc.
- might just complete, e.q. if datais already there

- O_DIRECT goes async, -EIOCBQUEUED

- added to a waitqueue, e.g. poll requests

Try async buffered read, see FMODE_BUF_RASYNC

Internally try polling if supported, see IORING_FEAT_FAST_POLL
- once fires, goto nowait attempts again

Any other way to go genuinely async; will be more in the future

Fall back to a thread pool, slower but often necessary

Misconception debunking

lo_uring is not "just a worker pool”

- worker threads is a slower path

lo_uring is not I/O Completion Ports (IOCP)

* ... Microsoftis now developing a io_uring for Windows

lo_uring is not only about syscall elimination/reduction

- provides asynchrony
- easy parallelism
- provides a state to base optimisations on, e.g. registerested files

The problem

A7

MELT[;OWN SPE CTRE

By Natascha Eibl - https://meltdownattack.com/, CCO,
https://commons.wikimedia.org/w/index.php?curid=65233480
https://commons.wikimedia.org/w/index.php?curid=65235937

syscall overhead

Vulnerability mitigations are expensive, and so are syscalls
- cost varies with CPU and enabled mitigations

Overhead for syscalls in a tight loop with little work can take 20-50%
(apparently, tested CPU is the worst case)

copy by 4KB at a time
cp_4kb ./file /dev/zero

29.47% busybox [kernel.vmlinux]
12.68% busybox [kernel.vmlinux]
12.49% busybox [kernel.vmlinux]
0.52% busybox [kernel.vmlinux]

syscall_exit_to_user_mode
entry_SYSCALL_64
syscall_return_via_sysret
do_syscall_64

A XN X X

mitigations enabled

nop requests,

batch 32

fio/t/io_uring -d32 -s32 -c32 -N1

16

9

N B B 01

A41%
14.
10.
10.
. 78%
.61%
.28%
.07%
.79%
.29%
. /5%

78%
70%
17%

io_uring
io_uring
io_uring
io_uring
io_uring
io_uring
io_uring
io_uring
io_uring
io_uring
io_uring

kernel.
' kernel
 kernel.
 kernel.
kernel.
[kernel
' kernel.
' kernel
‘kernel

io_uring

[kernel.vmlinux]

vmlinux]
.vimlinux]
vmlinux]
vmlinux
vmlinux]
.vinlinux]
vmlinux]
.vmlinux
.vmlinux]

A N XXX X X X X X

io_submit_sqge
syscall_exit_to_user_mode
__io_submit_flush_completions
io_submit_sqges
10_1issue_sqe
__lo_queue_sge
io_req_free_batch
entry_SYSCALL_64
syscall_return_via_sysret
submitter_fn

io_alloc_req

mitigations enabled

Null block device, “realistic batching” 4 requests at a time

modprobe null_blk no_sched=1 irgmode=1 completion_nsec=0 submit_queues=16
fio/t/io_uring -d4 -s4 -c4 -p1 -B1 -F1 -b512 /dev/nullb@

.01% io_uring [kernel.vmlinux]
.87% io_uring [kernel.vmlinux]

syscall_exit_to_user_mode
blkdev_direct_IO
entry_SYSCALL_64
syscall_return_via_sysret
kmem_cache_free
null_queue_rq

.27% io_uring [kernel.vmlinux]
.92% io_uring [kernel.vmlinux]
.89% idio_uring [kernel.vmlinux]
.74% io_uring [null_blk]

.68% io_uring io_uring [.] submitter_fn

' blkdev_bio_end_io
10_issue_sqge
io_do_iopoll
kmem_cache_alloc

A XN X X X X

.31% dio_uring [kernel.vmlinux]
.27% io_uring [kernel.vmlinux]
.19% io_uring [kernel.vmlinux]

N NN NN DNDNMNDNW B>~

N R R

.12% io_uring [kernel.vmlinux]

Sweet spot for optimisation. How about SQPOLL?
- still needs userspace to process completions

- takes a CPU core; high CPU consumption

» cache bouncing

BPF is there to help! Can also help latency

11

Requirements

Flexibility: what capabilities BPF has to have?
- submitting new requests

- accessing CQEs, multiple if needed

- poking into userspace memory

Low overhead
- Traditionally we’ve optimised batched submission more
- BPF is expected to have a lower batch ratio

12

struct io uring sqge {

u32 callback id;

Idea 1: let’s add a callback to each .
request and run it on completion

int io_init req(struct 1o uring sge *sge)
{
1f (sge->callback id)
- needs hooks in generic paths, non-zero cost req->bpf cb - get bpf (sqe->callback id);

* |limits control over execution context
- can’t do waiting and other async stuff
° BPF needs Context, Would need a”ocation volid io req complete (struct io kiocb *req, long res)

{a

- looks horrible ... if (req->callback)

req->bpf cb(req, res);

New io_uring request type: IORING_OP_BPF

No extra per request overhead, everything is enclosed in opcode handlers.
And we can use generic io_uring infrastructure:

- locking and better control of execution context

- completion and other batching

- space in the internal request struct, i.e. structio_kiocb

- can be linked to other requests

- possible to execute multiple times, i.e. keeping a BPF request alive

The downside is that extra requests are not free, there is a cost to
that, but we can work with it.

14

Feeding BPF completions

BPF needs feedback from other
requests.

The first idea: just use links and
pass a CQE of the previous request
to BPF!

- ugly again

- bound to linking by design

- no way to pass multiple CQEs

- extra overhead for non-BPF code

Completion Queue

struct io_uring_cqge

Request 1 —— Request2 —

struct io_uring_cqe

15

Multiple CQs

Introduce multiple CQs:

- sge->cq_idx, each request
specifies to which CQ its
completion goes

- BPF can emit and consume CQEs

Submission Queue

to/fromany CQ

- Can wait

» Synchronisationis up to the
userspace /| BPF

Kernel

User space

Completion Queues

16

Pros:

- Can pass multiple CQEs
- CQs can be waited on (including by BPF)
- Extra way of communication:

posting toa CQ

Example:

Each BPF request has its own CQ. It keeps a
number of operations in-flight and posts to
the main CQ when it’s done with the job.

Submission Queue

User space

Completion Queues

17

What about poking into the normal userspace memory?
BPF subsystem already has an answer: sleepable BPF programs

It does what it sounds like, allows BPF programs to sleep.

- reading userspace memory is already there

- writing is trivial to add

- a big deal forio_uring as submission might need to sleep

* bpf_copy_[from, to]_user() +io_uring performance is yet to be measured

There are also BPF maps / arrays and other infrastructure provided by BPF
- not everything is supported with sleepable programs, may get lifted (if not already)

18

Overhead

There can be O(N) BPF requests, important to keep overhead low

A lot of work has been done! Highlights:

- persistent submission state, request caching

- infrastructure around task_work and execution batching
- task_struct referencing and other overhead amortisation
- removing request refcounting

- completion batching

- native io-wq workers (planned to use)

« upcoming IOSQE_CQE_SKIP_SUCCESS

- just cutting the number of instructions required per request ...

QD1 should be in a good shape as well ...

... apart from syscalling and __do_sys_io_uring_enter

19

API: program registration

APl is not set in stone yet, can and will change

enum {

IORING REGISTER BPF,
IORING UNREGISTER BPF,

b g

int bpf prog fds[NR PROGS] = {...};
// BPF registration can be made optional

ret = _ sys io uring register (ring->ring fd, IORING REGISTER BPF, bpf prog fds, NR PROGS) ;

// unregister programs, inflicts full quiesce
ret = _ sys io uring register (ring->ring fd, IORING UNREGISTER BPF, 0, 0);

// or cleaned up automatically on ring exit

20

APIl: BPF request

enum {

IORING OP BPF,
[

struct 1o uring sge *sge = ...;

memset (sge, 0, sizeof (sqge));

sge->opcode = IORING OP BPF;

sqge->off = bpf program idx;

// generic, for all request types

sge->user data = (u64)data ptr; // returned back in CQE. Also, BPF has access to its user data
sge->cq idx = completion queue idx; // CQ index to post CQE to

sge->flags = sqge flags; // combination of IOSQE *, as usual

21

APIl: BPF definitions

enum { // Return values for io uring BPF programs
IORING BPF OK = 0, // complete request
IORING BPF WAIT, // wait on CQ for completions

¥

struct io uring bpf ctx { // BPF io uring context

__u64 user data; // sge->user data specified at submission
_ u32 wait nr; // number of requests to wait for
_u32 wait idx; // CQ index to wait on

¥

// Returns the number of submitted requests or a negative error 1if failed.

long (*bpf 10 uring submit) (void *ctx, void *sge, u32 size);

// Returns 0 on success, —-ENOMEM if the CQE has been dropped.

long (*bpf io uring emit cqge) (void *ctx, u32 cg idx, ub4 user data, s32 res, u32 cflags);
// Returns 0 on success, —-ENOENT if there are no CQOEs in the CQ.

long (*bpf io uring reap cqge) (void *ctx, u32 cg idx, struct io uring cge *cge, u32 size);

API: libbpf example

SEC ("iouring") // io uring BPF program
int bpf program name (struct io uring bpf ctx *ctx) {
struct io uring cge cqge;

ret = bpf io uring reap cqe(ctx, cg idx, &cqge, sizeof (cge));

struct 1o uring sge sqge;
io uring prep nop (&sqe); // helper copy-pasted from liburing
sge.user data = 42;

ret = bpf io uring submit (ctx, &sge, sizeof (sge));

uo4 data, *uptr = (u6b4d *)ctx->user data;

bpf copy from user (&data, sizeof (data), uptr);

1f (exit) return IORING BPF OK;
ctx->wailt 1dx = cg 1dx to wailt;
ctx->walt nr = nr cges to wailt;

return IORING BPF WAIT; // wait for @nr cges to wait CQEs in @cg idx to wait CQ

API: ideas?

- make BPF registration optional

- extra data to passin SQE, e.g. maps or shared memory

- more convenient bpf_copy_[from,to]_user(), e.g. plain pointers
- other synchronisation, e.g. futex

- batched version of bpf_io_uring_submit()

- anything missing?

24

Testing

Not yet conclusive. Test case:

- Copy afile by 4KB at a time into /dev/zero, buffered and fully cached

Mitigations Test case Time (ms)
ON read(2)/write(2) 1350

ON io_uring, simple QD=1 1630

any io_uring + BPF 810

OFF read(2)/write(2) 550
However, let’s take another CPU:

Mitigations Test case Time (ms)
ON read(2)/write(2) 1320

any io_uring + BPF 12560

25

Applicability

Applicability: shouldn’t be of interest if batching is naturally “high
enough”.

High queue depth is not always possible and/or desirable.

- batching hurts latency

- may care about ordering, e.g. TCP sockets.

- slow devices and memory/responsiveness restrictions

Use cases to try:

- databases / engines, caching systems

- Intelligent file-file splicing, e.g. based on data
- broadcast / collect

- mentioned that may be of use to QUIC

- explore applicability to FUSE

- Ideas are welcome

26

Next steps

Need to explore more test cases...
... and more “interesting” tests.

Each new case requires some tuning and optimisation.
Upside: also usually benefits non-BPF io_uring.

Have to solve some slight performance regressions from multi-CQ
- good chance extra CQs will only be visible to BPF

TODO: selftests, bpf_link, APl changes

27

Resources

Kernel
https://github.com/isilence/linux.git bpf_v3

Liburing, see <liburing>/examples/bpf/*
https://github.com/isilence/liburing.git bpf_v3

io_uring mailing list
lo-uring@vger.kernel.org

io_uring guide
https://kernel.dk/io uring.pdf

benchmark, <fio>/t/io_uring.c
git://git.kernel.dk/fio

28

https://github.com/isilence/linux.git
https://github.com/isilence/liburing.git
https://kernel.dk/io_uring.pdf

