

So You Want To Torture RCU?

© 2021 Facebook Corporation

Paul E. McKenney, Facebook

Linux Plumbers Conference Refereed Track, September 23, 2021

2

A Round For Those Torturing SW!!!

● 0day test robot
● kernelci
● -next tree
● hulk test robot
● syzkaller
● kselftest

● trinity
● coccinelle
● smatch
● Linux Test Project
● ktest
● And many many more!!!

3

“Shut Up And Start Torturing!!!”

4

“Shut Up And Start Torturing!!!”

● Given suitable system running qemu & kvm:
PATH=”tools/testing/selftests/rcutorture/bin:$PATH” export PATH

kvm.sh # Default 30 minutes (AKA 30m) on each of 19 scenarios.

kvm.sh --cpus 64 # Run scenarios concurrently in two batches of 30 minutes each.

kvm.sh --allcpus --duration 1d # Weekend run.

kvm.sh --cpus 128 --duration 12h --trust-make # All scenarios in one batch.

Kvm.sh --cpus 16 --configs "2*SRCU-N 2*SRCU-P 2*SRCU-t 2*SRCU-u" # 2x each SRCU scenario.

kvm-again.sh /path/to/old/run/results --duration 45s # No kernel builds.

kvm-remote.sh “sys1 sys2 … sys20” --cpus 80 --configs “TREE10 15*CFLIST”

Replace “sys1” etc. with names of systems you can non-interactively ssh to.

https://paulmck.livejournal.com/57769.html

5

What Does Success Look Like?
RUDE01 ------- 2102 GPs (7.00667/s) [tasks-rude: g0 f0x0]
SRCU-N ------- 42229 GPs (140.763/s) [srcu: g549860 f0x0]
SRCU-P ------- 11887 GPs (39.6233/s) [srcud: g110444 f0x0]
SRCU-t ------- 59641 GPs (198.803/s) [srcu: g1 f0x0]
SRCU-u ------- 59209 GPs (197.363/s) [srcud: g1 f0x0]
TASKS01 ------- 1029 GPs (3.43/s) [tasks: g0 f0x0]
TASKS02 ------- 1043 GPs (3.47667/s) [tasks: g0 f0x0]
TASKS03 ------- 1019 GPs (3.39667/s) [tasks: g0 f0x0]
TINY01 ------- 43373 GPs (144.577/s) [rcu: g0 f0x0] n_max_cbs: 34463
TINY02 ------- 46519 GPs (155.063/s) [rcu: g0 f0x0] n_max_cbs: 2197
TRACE01 ------- 756 GPs (2.52/s) [tasks-tracing: g0 f0x0]
TRACE02 ------- 559 GPs (1.86333/s) [tasks-tracing: g0 f0x0]
TREE01 ------- 8930 GPs (29.7667/s) [rcu: g64765 f0x0]
TREE02 ------- 17514 GPs (58.38/s) [rcu: g138645 f0x0] n_max_cbs: 18010
TREE03 ------- 15920 GPs (53.0667/s) [rcu: g159973 f0x0] n_max_cbs: 1025308
TREE04 ------- 10821 GPs (36.07/s) [rcu: g70293 f0x0] n_max_cbs: 81293
TREE05 ------- 16942 GPs (56.4733/s) [rcu: g123745 f0x0] n_max_cbs: 99796
TREE07 ------- 8248 GPs (27.4933/s) [rcu: g52933 f0x0] n_max_cbs: 183589
TREE09 ------- 39903 GPs (133.01/s) [rcu: g717745 f0x0] n_max_cbs: 83002

Plus exit code of zero, which can be useful when bisecting.

6

Other kvm.sh Parameters?

● --kconfig: Specify Kconfig options

● --bootargs: Specify kernel-boot parameters

● --kasan: Run under KASAN

● --kcsan: Run under KCSAN (big binaries!)

– Also requires very recent compilers

● --torture: rcu, lock, scf, refscale, rcuscale

● --dryrun scenarios: Show batches for given CPUs/configs

– Useful for working out what --config argument to specify

https://paulmck.livejournal.com/57769.html https://paulmck.livejournal.com/58077.html

7

“I Cannot Decide What to Torture!!!”

● Use the torture.sh script

● By default, tortures a little of everything
– Takes about 12 hours on a heavy-duty laptop

● Many arguments to control its torturing

https://paulmck.livejournal.com/61587.html

8

Arguments to torture.sh
● --do-all: Everything including KCSAN (disabled by default)

● --do-none: Nothing

● --do-kasan, --do-kcsan: Enable debugging

● Select tests:
– --do-clocksourcewd, --do-kvfree, --do-locktorture, --do-rcuscale,

--do-rcutorture, --do-refscale, --do-scftorture

● Select scenarios:
– --configs-rcutorture, --configs-locktorture, --configs-scftorture

● --duration: Nominal duration: 10m → 11h on 16 CPUs

9

“But I Want To Use A Debugger!!!”

10

“But I Want To Use A Debugger!!!”

● --gdb is your friend:
$ kvm.sh --allcpus --torture lock --configs LOCK05 --gdb
Waiting for you to attach a debug session, for example:
 gdb tools/testing/selftests/rcutorture/res/2020.08.27-14.51/LOCK05/vmlinux
After symbols load and the "(gdb)" prompt appears:
 target remote :1234
 continue

● Once you have connected, use gdb commands
– But “hbreak” instead of “break”
– The Linux kernel is not fond of software breakpoints

https://paulmck.livejournal.com/58616.html

11

“I Found a Bug!!! What Now???”

12

“I Found a Bug!!! What Now???”

● Fix it and post the patch? ;-)
● With RCU, heisenbugs are the common case

– So make it happen more often!

13

How to De-Heisenbug Bugs???
● It is not always easy, but here are a few tricks...

14

How to De-Heisenbug Bugs???
● Adjust CPUs to increase probability by factor of M

– Mx fewer runs with Mx more CPUs each
● If races are between many random kthreads

– Mx more runs with Mx fewer CPUs each
● If races are between a few specific kthreads

● This is theory: The real world does what it pleases

https://paulmck.livejournal.com/58187.html

N*M

N N N N N N N N N N

15

How to De-Heisenbug Bugs???
● Make risky operations happen more frequently!

– CPU hotplug is one of the usual suspects:
rcutorture.onoff_interval=200

– Long-lived readers (automatic)

– Full-system idle rcutorture.stutter

– Callback floods rcutorture.fwd_progress

– vCPU preemption kvm.sh --jitter “N us-sleep us-spin”
● See next slide

https://paulmck.livejournal.com/58077.html

16

Preemption Via Jitter

Hypervisor qemu/KVM

rcutorture
scenario

rcutorture
scenario

rcutorture
scenario jitter.sh jitter.shjitter.shjitter.sh

Covers Number of CPUs

One per CPU

The jitter.sh script binds to randomly selected CPUs, forcing preemption,
even when that vCPU thinks that it has disabled interrupts.

17

How to De-Heisenbug Bugs???
● Which scenarios cause the problem most frequently?

– Use --configs to run those scenarios

– Use config2csv.sh to compare configurations

– Double down on suspected accelerators
● Kconfig options and/or kernel boot parameters
● Modify kernel or scripts in some cases

https://paulmck.livejournal.com/58077.html

18

Kernel Module, Not Userspace

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

RCU

Torture!!!

Userspace

19

Kernel Module, Not Userspace

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

RCU

Torture!!!

Userspace

20

Kernel Module, Not Userspace

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

RCU

Userspace

rcutorture
kernel

module

Torture directly!!!

21

How to De-Heisenbug Bugs???
● Enlist the aid of the laws of physics!!!

● The speed of light is too slow and atoms are too big
– Hence memory latency and NUMA effects

● For each rcutorture guest OS:
– Place two CPUs in one hyperthreaded core

– Place two other CPUs in another core
● Preferably on some other socket

● Greatly increases probability of some types of period races

– Accesses take longer only sometimes, raise collision cross section

The effects were not subtle: https://paulmck.livejournal.com/62071.html

22

Semantics

23

RCU Semantics (Graphical)

Free Old Memory

Remove

rcu_read_lock()

rcu_read_unlock()
synchronize_rcu()

[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
:::
:::
:::

[return]

Remove

Free Old Memory

Remove

Remove

Free Old Memory

Free Old Memory

24

RCU Semantics (API)
● RCU has simple semantics:

– RCU grace period must wait for all pre-existing RCU readers
● Trivial textbook RCU implementation:

#define rcu_read_lock() __asm__ __volatile__("": : :"memory")
#define rcu_read_unlock() __asm__ __volatile__("": : :"memory")
#define rcu_dereference(p) \
({ \
 typeof(*p) *__p1 = READ_ONCE(p); \
 __p1; \
})
#define rcu_assign_pointer(p, v) smp_store_release((p), (v))
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 sched_setaffinity(current->pid, cpumask_of(cpu));
}

25

Just a Few Linux-Kernel Issues...
● Systems with 1000s of CPUs
● Sub-20-microsecond real-time response requirements
● CPUs can come and go (“CPU hotplug”)
● If you disturb idle CPUs. you enrage low-power embedded folks
● Forward progress requirements: callbacks, network DoS attacks
● RCU grace periods must provide extremely strong ordering
● RCU uses the scheduler, and the scheduler uses RCU
● Firmware sometimes lies about the number and age of CPUs
● RCU must work during early boot, even before RCU initialization
● Preemption can happen, even when interrupts are disabled (vCPUs!)

● RCU should avoid exploitable ease-of-use issues

26

Just a Few Linux-Kernel Issues...
● Systems with 1000s of CPUs
● Sub-20-microsecond real-time response requirements
● CPUs can come and go (“CPU hotplug”)
● If you disturb idle CPUs. you enrage low-power embedded folks
● Forward progress requirements: callbacks, network DoS attacks
● RCU grace periods must provide extremely strong ordering
● RCU uses the scheduler, and the scheduler uses RCU
● Firmware sometimes lies about the number and age of CPUs
● RCU must work during early boot, even before RCU initialization
● Preemption can happen, even when interrupts are disabled (vCPUs!)

● RCU should avoid exploitable ease-of-use issues

27

Not Just a Theoretical Possibility...

RCU

!

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

linux.conf.au video:

linux.conf.au video:

http://youtu.be/hZX1aokdN
iY

http://youtu.be/hZX1aokdNiY

28

Many Types of RCU Readers (Old)

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

preempt_enable();

local_bh_disable();

do_something_1();

rcu_read_lock();

local_bh_enable();

do_something_2();

preempt_disable();

rcu_read_unlock();

do_something_3();

preempt_enable();

29

Many Types of RCU Readers (New)

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

preempt_enable();

local_bh_disable();

do_something_1();

rcu_read_lock();

local_bh_enable();

do_something_2();

preempt_disable();

rcu_read_unlock();

do_something_3();

preempt_enable();

30

Many Types of RCU Readers (New)

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

preempt_enable();

local_bh_disable();

do_something_1();

rcu_read_lock();

local_bh_enable();

do_something_2();

preempt_disable();

rcu_read_unlock();

do_something_3();

preempt_enable();

Therefore, rcutorture must randomly generate overlapping readers.

31

Many Types of RCU Readers (New)

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

preempt_enable();

local_bh_disable();

do_something_1();

rcu_read_lock();

local_bh_enable();

do_something_2();

preempt_disable();

rcu_read_unlock();

do_something_3();

preempt_enable();

Therefore, rcutorture must randomly generate overlapping readers. But including nested readers!!!

32

Here is Your Elegant Synchronization Mechanism:

Photo by "Golden Trvs Gol twister", CC by SA 3.0

33

Here is Your Elegant Synchronization Mechanism
Equipped to Survive in The Linux Kernel:

Photo by Луц Фишер-Лампрехт, CC by SA 3.0

34

Semantics are the Tip of the Iceberg

Formal RCU Semantics

Informal RCU Semantics

R
eq

u
ir

e
m

e
n

ts

35

Semantics are the Tip of the Iceberg

Formal RCU Semantics

Informal RCU Semantics

R
eq

u
ir

e
m

e
n

ts
A few short years ago, there were
absolutely no formal RCU semantics!!!

36

Software Engineering

37

Software Engineering

● RCU contains 17,682 LoC (including comments, etc.)
● 1-3 bugs/KLoC for production-quality code: 18-53 bugs

– Best case I have seen: 0.04 bugs/KLoC for safety-critical code
● Extreme code-style restrictions, single-threaded, formal methods, …
● And still way more than zero bugs!!! :-)

● Median age of an RCU LoC is less than four years
– And young code tends to be buggier than old code!

● We should therefore expect a few tens more bugs!!!

Linux kernel v5.11

38

Software Engineering

● RCU contains 17,682 LoC (including comments, etc.)
● 1-3 bugs/KLoC for production-quality code: 18-53 bugs

– Best case I have seen: 0.04 bugs/KLoC for safety-critical code
● Extreme code-style restrictions, single-threaded, formal methods, …
● And still way more than zero bugs!!! :-)

● Median age of an RCU LoC is less than four years
– And young code tends to be buggier than old code!

● We should therefore expect a few tens more bugs!!!
● An rcutorture run that “succeeds” has failed to find them!!!

Linux kernel v5.11

39

Installed Base

40

Installed Base

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!

41

Installed Base

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!
Murphy is a nice guy: Everything that can happen, will...

42

Installed Base

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!
Murphy is a nice guy: Everything that can happen, will...
...maybe in geologic time

43

Installed Base

1

1975
NHS

100

10

1

1985
Various

Million-Year Bug? Once in Ten Millennia

44

Installed Base

1

1975
NHS

100

10

1

1985
Various

Million-Year Bug? Once per Century

1995
SQNT

10K

1K

100

10

1

45

Installed Base

1

1975
NHS

100

10

1

1985
Various

Million-Year Bug? Once a Month

1995
SQNT

10K

1K

100

10

1

2005
Linux

100K

10K

10M

1K

100

10

1

46

Installed Base

1

1975
NHS

100

10

1

1985
Various

Million-Year Bug? Several Times per Day

1995
SQNT

10K

1K

100

10

1

2005
Linux

100K

10K

10M

1K

100

10

1

100K

10K

10M

2015
Linux

1K

100

10

1

10G

47

Installed Base

1

1975
NHS

100

10

1

1985
Various

Million-Year Bug? Several Times per Hour

1995
SQNT

10K

1K

100

10

1

2005
Linux

100K

10K

10M

1K

100

10

1

100K

10K

10M

2015
Linux

1K

100

10

1

10G

100K

10K

10M

2017
Linux

1K

100

10

1

10G
100G

48

Installed Base

1

1975
NHS

100

10

1

1985
Various

Million-Year Bug? You don't want to know...

1995
SQNT

10K

1K

100

10

1

2005
Linux

100K

10K

10M

1K

100

10

1

100K

10K

10M

2015
Linux

1K

100

10

1

10G

100K

10K

10M

2017
Linux

1K

100

10

1

10G
100G

1T

100G

10G

100K

10K

10M

1K

100

10

1

IoT?

1T

49

Installed Base

1

1975
NHS

100

10

1

1985
Various

Million-Year Bug? You don't want to know...
But has Murphy transitioned
from a nice guy into a
homicidal maniac?

1995
SQNT

10K

1K

100

10

1

2005
Linux

100K

10K

10M

1K

100

10

1

100K

10K

10M

2015
Linux

1K

100

10

1

10G

100K

10K

10M

2017
Linux

1K

100

10

1

10G
100G

1T

100G

10G

100K

10K

10M

1K

100

10

1

IoT?

1T

50

Natural Selection

51

Natural Selection

52

Natural Selection: Not Just Lifeforms

Software
(Randomly
Generated)

Validation
(Selection!)

Bugs

Fewer (?)
Injected Bugs

Robust
Software

53

Natural Selection: Bugs are Software!

Software
(Randomly
Generated)

Validation
(Selection!)

Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

54

Natural Selection: Bugs are Software!

Software
(Randomly
Generated)

Validation
(Selection!)

Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

Bug Reports:
Improve

Validation

55

Validate Only Intended Use Cases

Current Validated
Use Cases

56

Major Development Generates Bug

Current Validated
Use Cases

57

After Validation and Bug Fixing

Current Validated
Use Cases

58

After Another Round of Development

Current Validated
Use Cases

59

More Validation and Bug Fixing

Current Validated
Use Cases

60

New
Use Cases

New
Use Cases

New Use Cases: Walls of Bugs!!!

Current Validated
Use Cases

61

Natural Selection: Bugs are Software!

Software
(Randomly
Generated)

Validation
(Selection!)

Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

Bug Reports
And Paranoia:

Improve
Validation

62

“Natural Selection” is a Euphemism

If your tests are not failing, they are not
helping to improve your software

https://paulmck.livejournal.com/61158.html

63

Summary

● How to torture RCU, including using gdb
● Tracking down heisenbugs
● The role of RCU semantics

– Limited but perhaps increasing over time

● Validation via natural selection, good, bad, ugly

64

Once Again, Applause for Testers!!!

65

But Watch Out For These Guys!!!

66

But Watch Out For These Guys!!!

Yes, they tortured software with new workloads, but that wasn’t enough for them!

67

These Guys Banished SW!!!

68

These Guys Banished SW!!! To Mars!

69

For More Information (1/2)
● Validating RCU in particular and concurrent software in general:

– “Stupid RCU Tricks: A tour through rcutorture”: https://paulmck.livejournal.com/61432.html
– “Verification Challenge 6: Linux-Kernel Tree RCU”:

https://paulmck.livejournal.com/46993.html
– “Is Parallel Programming Hard, And, If So, What Can You Do About It?”:

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
● “Validation” chapter, especially “Probability and Heisenbugs” section
● “Formal Verification” chapter

– “Hunting Heisenbugs” blog posts:
● https://paulmck.livejournal.com/14639.html
● https://paulmck.livejournal.com/14969.html

– Linux-kernel source code:
● kernel/rcu/{rcutorture.c,rcuref.c,rcuscale.c}, kernel/torture.c, kernel/locking/locktorture.c
● tools/testing/ tools/testing/selftests/rcutorture

70

For More Information (2/2)
● RCU specification, which is a function of time:

– Documentation/RCU/Design/Requirements/ in kernel source
– “RCU Usage In the Linux Kernel: One Decade Later”:

● http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf
● http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf
● 2020 update: https://dl.acm.org/doi/10.1145/3421473.3421481

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

