
Strange Kernel Performance Changes?
Cache Alignment Matters

Feng Tang

Intel Linux Kernel Team

Background

• 0Day (kernel test robot) keeps testing kernel performance

and reporting regressions and improvements

• Recently, there are many Strange cases, which are hard to

explain as bisected culprit commits seem to have nothing

to do with the benchmark

• Kernel developers including Linus suspected and even

challenged the reports: “What?” “Why it matters?”

• Goal: understand and explain them, try to mitigate (make

everyone’s life easier)

• Hints and ideas are welcome and appreciated!

Kernel Sections Layout

……

bss

initcall

setup

inittext

per_cpu load

data

ro_data

text System.map

Kernel Section Layout -II

• Text/Data sections layout

• Link order matters (from Makefile)

A.text B.text C.text F.textE.textD.textText

A.data B.data C.data F.dataE.dataD.dataData

G.text

G.data

init arch/sub-arch kernel securityfsmm block drivers net

Cache Alignment Matters

Most of them are caused unnoticeably by underlying cache

alignment changes:

• Text (function) alignment

• Data alignment (false sharing)

• HW cache prefetchers
• Adjacent cache lines prefetch (2N, 2N+1)

• L2 cache prefetcher

Text Alignment

• Kernel functions are all linked together compactly
• One line of code change may cause changes to the whole

kernel text/function’s alignment
• The earlier a .o get linked, the more parts it can affect
• Can be explained, but hard to be solved
• Kconfig or compiler change can greatly affect the result
• Examples

• [LKP] Re: [mm] fd4d9c7d0c: stress-ng.switch.ops_per_sec -30.5% regression

• [mm/hugetlb] c77c0a8ac4: will-it-scale.per_process_ops 15.9% improvement

https://lore.kernel.org/lkml/20200330011254.GA14393@feng-iot/#r
https://lore.kernel.org/lkml/20200114085637.GA29297@shao2-debian/#r

Case Study – Text Alignment

• A one-line mm fix patch cause 30.6%

regression for stress-ng.switch case

• change in kmem_cache_alloc_bulk()
c->tid = next_tid(c->tid);

• 16 more bytes in binary for the function
"49 83 40 08 01 addq $0x1,0x8(%r8)“

• The change is gone with forced

function alignment

Mitigation (Debug) – Text Alignment

Force all function start address aligned on 64 bytes (merged)

• A black box check which we are not 100% sure

• Kconfig option CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B

• Much less report after 0Day enabled it

• Why not default on? – 10% more kernel size, more TLB usage

Func A

Func C

Func DFunc B

Func A Func B

Func C

Func DAligned

Original

Data Alignment

• Key is the Cache False Sharing

• Data is more complex than text

• Static Layout

- .data section

- specific sections like (percpu)

• Dynamic Allocation: kmalloc/slab/vmalloc

• Debug Methods

• perf-c2c

• pahole

• add padding

Cache False Sharing

• Data loaded from memory to cache

on cacheline granularity

• Multiple CPUs access data in one

cache line

• all read → Fine

• one write → Bad

• Try to separate them in hot data

structure

https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html

Mitigation (Debug) – Data Alignment

• Force data sections of every .o file aligned (patch posted)

• Change in linker script vmlinux.lds.S

• Debug only due to huge size increase

• Per-CPU data - Add debug allocation macros to force all
percpu-data address aligned

• Kmalloc/slab - Force alignment (slab has parameter)

HW Cache Prefetcher

• Most platforms have them ON by default
as being helpful generally

• Transparent to SW programmer

• Accuracy affects bus BW hugely

• May vary on different generations as the
algorithm evolves

• Consider them if SW debugging can’t help

• Real cases related to the first 2 types

https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html

Adjacent Cache Lines Prefetch

• When one cache line is accessed and fetched, its adjacent cache
line will be fetched too

• 64B cache line extended into 128B ‘fat cacheline’
• Can not be detected by tools like perf-c2c

2N 2N+1

2N+2 2N+3

2N+4 2N+5

2N+8

2N+72N+6

2N+9

128 * N

128 * (N+1)

128 * (N+2)

128 * (N+3)

128 * (N+4)

Case Study – HW Prefetcher

• Patch removing a ‘struct page_counter’ from ‘struct

mem_cgroup’, causes -22.7% regression for will-it-

scale/page_fault2

• Commit does have relation with the test case, looks

to be alignment related

• 3 hot members(A, B, C) sit in 2 adjacent cache lines

which were not in one 128B trunk, but were pulled

into one by the commit.

• “False sharing” of 2 cachelines

• Solution – sperate them into different 128B trunks

2N 2N+1

2N+2 2N+3

2N 2N+1

2N+2 2N+3

A B

C

A B C

Mitigation – Selective Isolation

• Goal: Make kernel performance more stable (Less surprise)
• Chose N(10~20) .o files, add 64/128B alignment to one function

and one data of them (modules A/D/I below)
• Divide kernel into N independent capsules like capsules in a big

ship - one capsule changed/broken won’t affect others
• Rule: select more in critical and early modules
• It won’t hurt, with minimal increase of kernel size

A B C HFED LKJIG

A B C LKJIHFED G

Current

Isolated

Todos

• Upstream the mitigation and debug patches

• Extend perf-c2c tool to cover adjacent cache line prefetch

• Explore more about HW prefetcher

• Check cases which are still not explained

Q&A

Thank You!

