Strange Kernel Performance Changes?
Cache Alignment Matters

Feng Tang
Intel Linux Kernel Team

LINUX ‘ ;

PLUMBERS
CONFERENCE > september 20-24, 2021

‘Q LINUX September 20-24, 2021
PLUMBERS
CONFERENCE Background

ODay (kernel test robot) keeps testing kernel performance
and reporting regressions and improvements

Recently, there are many Strange cases, which are hard to
explain as bisected culprit commits seem to have nothing
to do with the benchmark

Kernel developers including Linus suspected and even
challenged the reports: “What?” “Why it matters?”

Goal: understand and explain them, try to mitigate (make
everyone'’s life easier)

Hints and ideas are welcome and appreciated!

LINUX September 20-24, 2021
PLUMBERS
CONFERENCE

initcall
setup

inittext

per_cpu load

data

oooooooooooooaon
ooo0000000Ze000
TEEEEEEE81000000
TEEEEEEEE1 000000
Tfffffft8le0llb?
TEEEEELE8=2000000
TEEEEEEE8245c000
TEEEEEEEE2600000
TEfffffte=z28765840
Tfffffftt8Zccl1 000
Tfffffftt8Zccl1 000
Tfffffft8Zcae 000
TEEEEEfEfE82d5663E
TEEEEEEE8Z 033520
TEffffft8Z 0388
TEEEffft82 1000
TEEEEffEEg2£2a000
TEEEEEEE82400000
TEEEEEf 82420000

Mm99 300000 ®=ma9494d3010

Kernel Sections Layout

per Cpu start
::per:cpu:end
_=stext
_text

etext
:_Start_rodata
__end rodata
_adata
_edata

init begin
::per_gpu_load
_sinittext
_elnittext
initcall start
initcall:end
init end
__b=s=s start

bss stop
:gnd B

System.map

Ll N Ux September 20-24, 2021

PLUMBERS - -
Mot Kernel Section Layout -I|

®* Text/Data sections layout

Text B.text C.text D.text E.text Ftext G.text

Data A.data B.data C.data D.data E.data F.data G.data

® Link order matters (from Makefile)

init arch/sub-arch kernel mm fs security block drivers net

LINU)X September 20-24, 2021
B e " Cache Alignment Matters

Most of them are caused unnoticeably by underlying cache
alignment changes:

® Text (function) alignment

® Data alignment (false sharing)

® HW cache prefetchers

* Adjacent cache lines prefetch (2N, 2N+1)
® L2 cache prefetcher

LI N Ux September 20-24, 2021

PLUMBERS :
CONFERENCE Text Alignment

® Kernel functions are all linked together compactly

One line of code change may cause changes to the whole
kernel text/function’s alignment

The earlier a .o get linked, the more parts it can affect
Can be explained, but hard to be solved
Kconfig or compiler change can greatly affect the result

Examples
®* [LKP] Re: [mm] fd4d9c7dO0c: stress-ng.switch.ops per sec -30.5% regression
* [mm/hugetlb] c77c0a8ac4: will-it-scale.per process ops 15.9% improvement

D.func3
D.func2
D.funcl
C.funcl
B.func4
B.func3
B.func2
B.funcl
A.func3
A.func2
A.funcl

https://lore.kernel.org/lkml/20200330011254.GA14393@feng-iot/#r
https://lore.kernel.org/lkml/20200114085637.GA29297@shao2-debian/#r

LINU)X September 20-24, 2021
PLUMBERS _
Q CONFERENCE Case Study — Text Alignment

* Aone-line mm fix patch cause 30.6% "=

ffffffff812al880 T kmem_c ache_al loc_bulk

regreSSIOn fOr Stress_ngSWItCh case tfffffffslialat0 t kmalloc large node

fELEfE£E£812albl0 £ calculate sizes
ffffffffe8lzalebl t store user store

" tEffffftalzalfan ¢ poisoﬁ_ﬁtore
* Change In kmem_CaChe_a”OC_bUIk() fEEfEEff812alf5%0 £ red zone store
c->tid = next tid(C->tid)' CEEfEEfE812a2000 € order store
]] 1 new map:
e 16 more bytes N b|nary for the function FEFEEFEE812a1880 T kmem cache alloc bulk
"49 83 4008 01 addq SO0x1,0x8(%r8)“ fEEfEEEE812alb20 T kmalloc node ---> relocated

* The change is gone with forced
function alignment

LI N Ux September 20-24, 2021

PLUMBERS Mitigation (Debug) — Text Alignment
CONFERENCE

Force all function start address aligned on 64 bytes (merged)

® A black box check which we are not 100% sure

* Kconfig option CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B

* Much less report after ODay enabled it

* Why not default on? — 10% more kernel size, more TLB usage

(]

CONFIG DEBUG FORCE FUNCTION ALIGHN ©4B

KBUILD CFLAGS += -falign-functions=64

Original Func A Func C Func D

LINU)X September 20-24, 2021
PLUMBERS .
@ CONFERENCE Data Alignment

® Key is the Cache False Sharing
® Data is more complex than text
e Static Layout
- .data section
- specific sections like (percpu)
* Dynamic Allocation: kmalloc/slab/vmalloc
® Debug Methods
e perf-c2c
 pahole
e add padding

LI N Ux September 20-24, 2021
PLUMBERS -
Qcoupsnmcs Cache False Sharing
* Data loaded from memory to cache Thread 0 Thread 1
on cacheline granularity CPU 0 CPU 1
° Multiple CPUs access data in one | |
CaChe |ne Cache Line w
allread -2 Fine
* one write > Bad 4\ Cache

* Try to separate them in hot data | |
structure

Memory

https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html

LINU X September 20-24, 2021
) sz Viigaton (pebug) - Data Algnment

® Force data sections of every .o file aligned (patch posted)
®* Change in linker script vmlinux.lds.S
* Debug only due to huge size increase

® Per-CPU data - Add debug allocation macros to force all
percpu-data address aligned

® Kmalloc/slab - Force alignment (slab has parameter)

LI N Ux September 20-24, 2021

R HW Cache Prefetcher

Most platforms have them ON by default
as being helpful generally

Transparent to SW programmer
Accuracy affects bus BW hugely

May vary on different generations as the
algorithm evolves

Consider them if SW debugging can’t help
Real cases related to the first 2 types

Prefetcher

L2 hardware prefetcher

L2 adjacent cache line

prefetcher

DCU prefetcher

DCU IP prefetcher

Bit# in
MSR
0x1A4

Description

Fetches additional lines of code or data into
the L2 cache

Fetches the cache line that comprises a
cache line pair (128 bytes)

Fetches the next cache line into L1-D
cache

Uses sequential load history (based on
Instruction Pointer of previous loads) to
determine whether to prefetch additional
lines

https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html

L' N ux September 20-24, 2021

PLUMBERS _ Adjacent Cache Lines Prefetch

® When one cache line is accessed and fetched, its adjacent cache
line will be fetched too

® 64B cache line extended into 128B ‘fat cacheline’
® (Can not be detected by tools like perf-c2c

(]

128 * N 2N 2N+1
128 * (N+1) 2N+2 2N+3
128 * (132
128 * (N+3) 2N+6 2N+7

LI N Ux September 20-24, 2021

o Case Study — HW Prefetcher

CONFERENCE

(]

« Patch removing a ‘struct page counter’ from ‘struct oN o
mem_cgroup’, causes -22.7% regression for will-it-
scale/page_fault2 IN+2 2N+3

« Commit does have relation with the test case, looks ‘
to be alignment related

« 3 hot members(A, B, C) sitin 2 adjacent cache lines [E\

which were not in one 128B trunk, but were pulled NG SN+3

Into one by the commit.
« “False sharing” of 2 cachelines

e Solution — sperate them into different 128B trunks

LI N Ux September 20-24, 2021

PLUMBERS T : - . i
s Mitigation — Selective Isolation

(]

Goal: Make kernel performance more stable (Less surprise)

® Chose N(10~20) .o files, add 64/128B alignment to one function
and one data of them (modules A/D/I below)

Divide kernel into N independent capsules like capsules in a big
ship - one capsule changed/broken won’t affect others

Rule: select more in critical and early modules
It won’t hurt, with minimal increase of kernel size

Current

Isolated A B C D E F G H I J K L

‘Q LINUX September 20-24, 2021
PLUMBERS
CONFERENCE Todos

* Upstream the mitigation and debug patches

* Extend perf-c2c tool to cover adjacent cache line prefetch
* Explore more about HW prefetcher

®* Check cases which are still not explained

LI N Ux September 20-24, 2021
Q PLUMBERS
CONFERENCE

Q&A

Thank You!

