
The Forefront of the Development for NVDIMM
on Linux Kernel (Linux Plumbers conf. ver.)

2021/Sep/23

Yasunori Goto (Fujitsu Limited.)
Ruan Shiyang (Nanjing Fujitsu Nanda Software Technology Co., Ltd.)

Copyright 2021 FUJITSU LIMITED0

Agenda

◼ Summary of current status of development for NVDIMM (Yasunori)
◼ Basis of NVDIMM on Linux

◼ Issues of Filesystem-DAX (Direct Access mode)

◼Deep dive to solve the issues of Filesystem-DAX (Ruan)
◼ Support reflink & dedupe for fsdax

◼ Fix NVDIMM-based Reverse mapping

◼ Conclusion

Copyright 2021 FUJITSU LIMITED1

Self introduction

◼ Yasunori Goto
◼ I have worked for Linux and related OSS since 2002

• Development for Memory hotplug feature of Linux Kernel

• Technical Support for troubles of Linux Kernel

• etc.

◼ Currently, leader of Fujitsu Linux Kernel Development team

◼ In the last few years, I have mainly worked for NVDIMM

• some enhancement for RAS of NVDIMM

• For Fault location feature

• For Fault prediction feature
“The ideal and reality of NVDIMM RAS”
https://www.slideshare.net/ygotokernel/the-ideal-and-reality-of-nvdimm-ras-newer-version

Copyright 2021 FUJITSU LIMITED2

https://www.slideshare.net/ygotokernel/the-ideal-and-reality-of-nvdimm-ras-newer-version

Basis of NVDIMM on Linux

Copyright 2021 FUJITSU LIMITED3

Characteristics of Non-Volatile DIMM (NVDIMM)

◼ Persistent memory device which can be inserted to DIMM slot like DRAM

◼ CPU can read/write NVDIMM directly

◼ It can keep data persistency even if system is powered down or rebooted

◼ Latency, capacity, and cost have characteristics between DRAM and NVMe

◼ Use case
◼ Example

• In memory Database

• Hierarchical storage, distributed storage

• Key-Value-store

◼ Famous Product

◼ Intel Data Center Persistent Memory Module (DCPMM)

Copyright 2021 FUJITSU LIMITED

CPU
cache

DRAM

NVDIMM

NVMe
SSD (SAS/SATA)

HDD

Capacity

Latency cost

4

Impact of NVDIMM

Copyright 2021 FUJITSU LIMITED

Page cache

System call
(Switch to kernel mode)

Sync()/fsync()/msync()

It was created for SLOW I/O storage, but
NVDIMM is fast enough without page cache

If user process calls cpu flush instruction,
then it is enough to make persistency

• Application can read/write to NVDIMM directly
• Even system call may be waste of time due to

switching between kernel mode and user mode

Traditional I/O layer becomes redundant for NVDIMM

New interface is expected for NVDIMM!

5

◼ Many software assumes that memory is VOLATILE yet

NVDIMM is difficult for traditional software

Copyright 2021 FUJITSU LIMITED

• In older CPU, its cache is still volatile
• If system power down suddenly, then some

data may not be stored

Need to prepare for sudden powerdown

• Should not change data structures in NVDIMM
• If the structures are changed, software update

will be cause of disaster

• If the data is broken, software need to detect
it and correct it

• Software need to assign not only free area, but
also used area for reuse its data

• In addition, kernel must assign the area to
suitable process with authority check

Need data structure compatibility on NVDIMM

Need to detect / correct collapsing data Need data area management

What will be necessary for a software to use NVDIMM?

6

Confliction of requirements

Copyright 2021 FUJITSU LIMITED

Filesystem
is still useful

Filesystem
is too slow

• Traditional I/O stack is too heavy

• CPU cache flush is enough to make persistency
• Need new access interface to NVDIMM for

next generation software

• Filesystem gives many solution for the
previous considerations

• It is useful for current software

• Format compatibility of filesystem
• Data correction
• Journaling, or CoW
• region management
• authority check
• etc...

• call system call
• page cache
• block device layer
• etc…

7

Interfaces of NVDIMM (1/3)

◼ Because of the previous reasons, Linux provides some interfaces for application

◼ Storage Access(green)

• Application can access NVDIMM
with traditional I/O IF like SSD/HDD

• So, application can use this mode
without any modification

◼ Filesystem DAX(blue)

• Page cache is skipped when you use
read()/write() on Filesystem-DAX

• Application can access NVDIMM area
directly if it calls mmap() for a file

• Need filesystem support

• Xfs, ext4…

• This mode is suitable for modifying
current applications for NVDIMM.

Copyright 2021 FUJITSU LIMITED

DAX enabled
filesystem

NVDIMM

user layer

kernel layer

Pmem driver device dax driver

/dev/dax

New App with Device
DAX

BTT driver

Traditional
filesystem

Traditional App
New App with

Filesystem DAX

PMDK

management
command

sysfs

ACPI driver

ACPI

8

Interfaces of NVDIMM (2/3)

◼ Because of the previous reasons, Linux provides some interfaces for application

◼ Device DAX(red)

• Application can access NVDIMM area
directly if it calls mmap() for /dev/dax

• /dev/dax allows only open(), mmap(),
and close()

• IOW, you can not use read()/write()
nor any other system call

• For innovative new application with
NVDIMM

◼ PMDK(purple) is provided

• Set of convenient libraries and tools
for filesystem DAX and Device DAX

• Transaction support for pmem applications

• Pool management in the DAX file/device

• Etc.
Copyright 2021 FUJITSU LIMITED

DAX enabled
filesystem

NVDIMM

user layer

kernel layer

Pmem driver device dax driver

/dev/dax

New App with Device
DAX

BTT driver

Traditional
filesystem

Traditional App
New App with

Filesystem DAX

PMDK

management
command

sysfs

ACPI driver

ACPI

9

Interfaces of NVDIMM(3/3)

◼ NVDIMM is shown as device files like storage
◼ For Storage Access : /dev/pmem##s (# means number)

◼ Filesystem DAX: /dev/pmem##

◼ Device DAX: /dev/dax##.#

◼ ndctl(*) can create these device when it creates namespace
◼ Example of Filesystem DAX

◼ You can make filesystem
on /dev/pmem##s
or /dev/pmem##

(*) a set of tools/commands for NVDIMM

◼ Note: /dev/dax##.# is character device
◼ Since you cannot use read()/write() for /dev/dax##.#, you cannot use dd command for backup

◼ You need to daxio command of PMDK instead of it
Copyright 2021 FUJITSU LIMITED

$ sudo ndctl create-namespace -e "namespace0.0" -m fsdax -f
{
"dev":"namespace0.0",
"mode":"memory",
"size":"5.90 GiB (6.34 GB)",
"uuid":"dc47d0d7-7d8f-473e-9db4-1c2e473dbc8f",
"blockdev":"pmem0",
"numa_node":0

}
$ sudo ls /dev/pmem*
/dev/pmem0

10

Filesystem-DAX is still experimental status

Copyright 2021 FUJITSU LIMITED

• The management way of NVDIMM is almost same with traditional filesystem
• Operator can use traditional command to manage NVDIMM area

• Not only application can access NVDIMM area directly, but also it can use traditional system call

Filesystem-DAX is very expected interface…

• The “experimental” message is shown when the filesystem is mounted with DAX option
• There are difficult issues in kernel layer for some years

But it is still experimental….

• In contrast, Device DAX requires pool management by tools of PMDK
• Otherwise, a software need to posses whole of the namespace (/dev/dax)

• In addition, Application can NOT use many system call in Device DAX

What is the reason?

11

Issues of Filesystem-DAX

◼What is solved, and what is current issues

Copyright 2021 FUJITSU LIMITED12

Why Filesystem-DAX is experimental?

◼ In summary, there are 2 big reasons

Copyright 2021 FUJITSU LIMITED

Filesystem DAX combines storage and memory characteristics

• This causes corner-case issues of Filesystem-DAX
• They are often difficult problem

More additional features were required,
but they are/were difficult to make

• Configure DAX on/off for each inode (directory or file)
• Co-existence with CoW filesystem

13

Corner Case Issue 1 : Update metadata(1/3)

Copyright 2021 FUJITSU LIMITED

The first problem is “updating metadata” of the file

metadata

data

In Filesystem-DAX, we expected
that application can make
persistency of data with only cpu
cache flush as I said….

However, this also means there is no
chance to update metadata by
kernel/filesystem

file

• Update time of the file may not be correct
• If an application use write some data to file on the filesystem DAX, and a user remove

some blocks of the file by truncate(2), kernel cannot negotiate it
• Data of the file may be lost

• If data transferred by DMA/RDMA to the page which is allocated as filesystem DAX,
similar problem may occur

14

Corner Case Issue 1 : Update metadata(2/3)

◼ Current Status of update metadata problems

Copyright 2021 FUJITSU LIMITED

• Solved by introducing new

MAP_SYNC flag of

mmap()
• Page fault occurs every

write access, then kernel
can update meta data

• PMDK specifies this flag

• Solved by waiting

truncate() until finishing

RMDA

• Not solved
• Truncate() can not wait the

completion of transfer,
because it may too long
time

General write access DMA/RDMA data access

Kernel/driver layer

user process layer

(E.g. infiniband,

video(v4l2))

15

Corner Case Issue 1 : Update metadata(3/3)

◼ Current Status of update metadata problems

Copyright 2021 FUJITSU LIMITED

• Sloved by introducing new

MAP_SYNC flag of

mmap()
• Page fault when write

access, then kernel
update meta data

• PMDK specifies this flag

• Solved by waiting

truncate() until finishing

RMDA

• Not solved
• Truncate() can not wait the

completion of transfer,
because it may too long
time

General write access DMA/RDMA data access

Kernel/driver layer

user process layer

(E.g. infiniband,

video(v4l2))

• In ODP, usually driver/hardware does not map the
pages of DMA/RDMA area for application

• It maps the pages when application accesses them
• Kernel/driver can coordinate metadata at the time

• Mellanox(NVIDIA) newer card has the feature

Workaround:
“On Demand Paging(ODP)”

16

Corner Case Issue 2: unbind(1/2)

◼Unbind is a sysfs interface to disconnect / hot-remove a device
◼ Each device driver provides its handler for it

◼ Though NVDIMM is not hotplug device physically, its interface can be used to disable
and switch the mode of NVDIMM namespace

• Ex)

• To change namespace mode from Filesystem-DAX to Device-DAX

• To allow that users can NVDIMM like normal RAM

• Etc.

Copyright 2021 FUJITSU LIMITED

Example of“how to use Device DAX namespace like a normal RAM”
1) Remove the device from “Device DAX”infrastructure
echo -n dax0.0 > /sys/bus/dax/drivers/device_dax/remove_id
echo -n dax0.0 > /sys/bus/dax/drivers/device_dax/unbind

2) Bind it to kmem driver
echo -n dax0.0 > /sys/bus/dax/drivers/kmem/new_id
echo -n dax0.0 > /sys/bus/dax/drivers/kmem/bind

17

Corner Case Issue 2: unbind(2/2)

◼ Unbind is likely “surprising remove” interface

◼ There is no way to fail of unbind even if a user is using it

• It must be disabled forcibly

https://lore.kernel.org/linux-btrfs/CAPcyv4g3ZwbdLFx8bqMcNvXyrob8y6sBXXu=xPTmTY0VSk5HCw@mail.gmail.com/

◼ To solve this problem, Filesystem-dax needs to disable a range of NVDIMM
area immediately
◼ Currently, this is not solved yet

◼ It will be solved after the end of Ruan's work which will be talked by him today

• His new code will help to solve it

Copyright 2021 FUJITSU LIMITED

A race condition was reported between Filesystem-dax and unbind in 2021/Feb

18

https://lore.kernel.org/linux-btrfs/CAPcyv4g3ZwbdLFx8bqMcNvXyrob8y6sBXXu=xPTmTY0VSk5HCw@mail.gmail.com/

DAX on/off for each inode (directory or file) (1/3)

◼ Expected use-cases

Copyright 2021 FUJITSU LIMITED

Need more fine-grain settings

Change DAX attribute by application

Performance tuning

Workaround when Filesystem-DAX has a bug

Configuration is always painful for administrator
If application can detect and change it, it will be helpful for them

Users may want to change the DAX mode depending on each file

Since the write latency of NVDIMM is a bit slower than RAM,
User may want to use page cache by DAX off setting

19

DAX on/off for each inode (directory or file) (2/3)

◼ What was the problem

◼ If filesystem change DAX attribute, filesystem need to change methods of filesystem between
DAX and normal file, but they may be executed yet

◼ Data of the page cache must be moved silently when the dax attribute becomes off

• These problems were very difficult

Copyright 2021 FUJITSU LIMITED

Page caches
On DRAM

xfs_vm_writepages()
xfs_iomap_set_page_dirty()
:
:

Methods for DAX fileMethods for normal file

Need change xfs_dax_writepages()
noop_set_page_dirty()
:
:

struct address
space

inode

struct address
space

inode

No page
cache

Normal file DAX file

20

DAX on/off for each inode (directory or file) (3/3)

◼ Fortunately, this issue was solved

◼ The DAX attribute is changed only when its inode cache is NOT loaded on memory

• Filesystem can load suitable methods for each attribute when it reloads inode to memory

• Page caches of the file are also dropped

• Users can use this feature with the new mount option. #mount … -o dax=inode

• The DAX attribute is changed by command

◼ Note

• All of applications which use the target file must close it to change the dax attribute

• Filesystem will postpone changing the DAX attribute until dropping inode cache and page cache of the file

Copyright 2021 FUJITSU LIMITED

Normal file DAX file

drop inode
cache

drop inode
cache

reload

reload

DAX on : $xfs_io -c 'chattr +x’ <file or directory>
DAX off: $xfs_io -c 'chattr -x’<file or directory>

21

Coexisting with CoW (reflink/dedup) filesystem (1/2)

◼ The Copy on Write feature of filesystem (xfs:reflink/dedup, btrfs)

◼ If there is a same data block on different files, filesystem can merge it as same block

◼ So far, if only filesystem manages such block, it was enough

• Since a page cache is allocated for each file of the block, memory management layer don’t need to know it

◼ In Filesystem-DAX, it becomes problems

• Merged block equals merged memory itself, it affects the memory failure case

Copyright 2021 FUJITSU LIMITED

File A File B

offset 100 offset 200

22

Coexisting with CoW (reflink/dedup) filesystem (2/2)

◼ Problems

Copyright 2021 FUJITSU LIMITED

Ruan-san will talk how to solve them

• Currently, there is no implementation of
reflink/dedupe for Filesystem-DAX
• Iomap, which is newer io block

layer instead of buffer_head, has
interface for CoW filesystem

• XFS filesystem DAX also uses iomap
• But there is no code to use CoW

and DAX at the same time

Need actual CoW implementation
for Filesystem DAX

• When a memory failure occurs, need to
kill processes which use the memory

• To achieve it, kernel need to find all
processes from the merged page/block
• But a merged page has only one

struct page
• No space for plural files in it

Needs to chase plural files from a
merged page/block

23

Deep dive to solve the issue of Filesystem-DAX

◼ Support reflink/dedupe for FSDAX*

◼ Improve NVDIMM-based Reverse mapping

* Filesystem-DAX

Copyright 2021 FUJITSU LIMITED24

Self-introduction

◼ Ruan Shiyang
◼ A Software Engineer of Fujitsu Nanda

◼ Experience in Embedded development

◼ Currently focusing on Linux filesystem and persistent memory

Copyright 2021 FUJITSU LIMITED25

Create a XFS (reflink is enabled by default) and mount it with “dax” option

Then error occurs

The dmesg shows the reason

Background

◼ fsdax is “EXPERIMENTAL”
◼ reflink and fsdax cannot work together

Copyright 2021 FUJITSU LIMITED

$ mkfs.xfs /dev/pmem0 && mount –o dax /dev/pmem0 /mnt

mount: /mnt: wrong fs type, bad option, bad superblock on /dev/pmem0,
missing codepage or helper program, or other error.

XFS (pmem0): DAX enabled. Warning: EXPERIMENTAL, use at your own risk
XFS (pmem0): DAX and reflink cannot be used together!

26

reflink

◼ Files share extents for same data

◼ Advantages

◼ Fast copy

◼ Save storage

◼ Copy on Write mechanism (CoW)

◼ Copy the shared extents before writing data

Copyright 2021 FUJITSU LIMITED

File A File B

Extent I

File A

Extent I Extent II

copy

File A File B

Extent I

File A

Extent I

File BFile A

Extent I

write

File BFile A

Extent I

File BFile A

Extent I

Copy then Write

File

Disk

File

Disk

File

Disk

copy

--reflink=always

27

fsdax (Filesystem DAX)

◼ A mode of a NVDIMM namespace

◼ No page cache in I/O path

◼ Allows direct mappings to persistent memory media

Copyright 2021 FUJITSU LIMITED

read()

write()

mmap()

vfs

SSD/HDDpage
cache

NVDIMM

direct access (DAX)

28

Why reflink and fsdax cannot work together?

◼ Issues
1. Support reflink/dedupe for FSDAX

◼ Extent iomap interface

◼ Support CoW in fsdax

◼ Support Dedupe in fsdax

2. Improve NVDIMM-based Reverse mapping

◼ Support 1-to-N Reversed mapping for NVDIMM

Copyright 2021 FUJITSU LIMITED29

Support reflink/dedupe for FSDAX

◼ Difference between Buffered-IO vs. FSDAX

◼ What must be implemented?

◼ How are they implemented?

Copyright 2021 FUJITSU LIMITED30

Kernel

page
cache

Comparison: Buffered-IO vs. FSDAX write() (1/2)

Copyright 2021 FUJITSU LIMITED

Sync to disk

Get destination from XFS
(Allocate Delay extents)

CoW

Read from disk

Write data

Disk SSD / HDD

User Space write()

◼ Requires page cache

1. Read（Copy）destination data
- from disk
- to page cache

2. Write user data
- from userspace
- to page cache

3. Sync page cache to disk
- remap CoW extents

The progress of using page cache
indicate the CoW operation.

1

2

Mark dirty

iomap_begin()
xfs_buffered_write_iomap_begin()

iomap_end()
xfs_buffered_write_end()

actor()
iomap_write_actor()

Clean up if write fails

Buffered-IO

3

31

Kernel

Comparison: Buffered-IO vs. FSDAX write() (2/2)

Copyright 2021 FUJITSU LIMITED

Disk NVDIMM

User Space write()

◼ No page cache
- directly access to NVDIMM

1. Not Copy
- get NVDIMM address only

2. Directly Write
- user data to NVDIMM
- no need to sync
- cannot remap extents

FSDAX

iomap_begin()
xfs_direct_write_iomap_begin()

iomap_end()
NULL

actor()
dax_iomap_actor()

Get NVDIMM address
from direct_access()

Get destination from XFS
(Allocate immediate extents)

Write data

1

2

CoW is missing

32

Kernel / FSDAX

What must be implemented?

◼ Extent iomap interface
◼ Introduce ‘srcmap’

◼ Fill ‘iomap’ & ‘srcmap’ for fsdax

◼ Support CoW in fsdax
◼ Add CoW for write()

◼ Add CoW for mmap()

◼ Remap extents after CoW

◼ Support Dedupe in fsdax

◼ Add a ‘dax’ deduplication

Copyright 2021 FUJITSU LIMITED

• ALLOCATE new extent for CoW
• STORE source extent info

• COPY source data to destination
• WRITE user data to NVDIMM

• REMAP the extents of this file

Enhancement in iomap framework

iomap_begin()
xfs_direct_write_iomap_begin()

iomap_end()
xfs_dax_write_iomap_end()

actor()
dax_iomap_actor()

33

iomap interface - Introduce ‘srcmap’

◼What is necessary
◼ Require source info for CoW

• Only use ‘iomap’ to tell destination to write

• but CoW requires more info

• source bno: where to copy from

• source length: how much to copy

◼How?
◼ Introduce another struct called ‘srcmap’

• remember & pass the source info

Copyright 2021 FUJITSU LIMITED

File A

Extent I

copy

File B

* Introduced by Goldwyn Rodrigues: [PATCH] iomap: use a srcmap for a read-modify-write I/O

‘iomap’
• destination bno
• destination length

‘srcmap’
• source bno
• source length

34

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c039b99792726346ad46ff17c5a5bcb77a5edac4

Kernel: FSDAX / XFS

CoW

iomap interface – Fill ‘iomap’ & ‘srcmap’

◼What is necessary
◼ Store source info in ‘srcmap’

• Only fill ‘iomap’ in ->iomap_begin()

• Implemented by filesystem

• Need to fill ‘srcmap’ for shared extent

◼ How?

◼ Add CoW branch

• Allocate new extent for CoW

• Fill ‘srcmap’ with destination extent

• Fill ‘iomap’ with new extent

• Set IOMAP_F_SHARED flag

Copyright 2021 FUJITSU LIMITED

get destination extent

if shared?

if HOLE?

Y

Y

N

allocate new extent

fill ‘iomap’ with new extent

set IOMAP_F_SHARED

iomap_begin()
xfs_direct_write_iomap_begin()

fill ‘srcmap’ with destination

35

Kernel: FSDAX

CoW

Support CoW - Add CoW for write()

◼What is necessary
◼ Execute CoW in write() path

• Only write user data to destination

• Use ->direct_access() to translate address

- From: offset in block device

- To: physical memory address in NVDIMM

• Need a pre-copy before writing

• src_addr: (translated) source address

• dest_addr: (translated) destination address

◼How?

◼ Add CoW branch

• Copy source data from ‘srcmap’ to NVDIMM

Copyright 2021 FUJITSU LIMITED

Y

get srcmap

if CoW?

copy source data to dest_addr

->direct_access() => src_addr

N

write user data to dest_addr

actor()
dax_iomap_actor()

->direct_access() => dest_addr

from ‘iomap’

from ‘srcmap’

36

Kernel: FSDAX page fault

CoW

Support CoW - Add CoW for mmap()

Copyright 2021 FUJITSU LIMITED

Y

get srcmap

if CoW?

copy source data to dest_addr

->direct_access() => src_addr

N

associate VMA with PFN

->direct_access() => PFN & dest_addr

from ‘iomap’

from ‘srcmap’

◼What is necessary
◼ Execute CoW in page fault

• FSDAX has its own specific PTE&PMD fault
• Use iomap framework

• Only find destination PFN & associate VMA

• Need a pre-copy before associating
• PFN: destination PFN found by ->direct_access()

• src_addr: (translated) source address

• dest_addr: (translated) destination address

◼How?
◼ Add CoW branch in PTE&PMD fault

• Copy source data before VMA is associated
• Prepare for writing user data in userspace

37

Kernel: FSDAX / XFS

iomap_end()
xfs_dax_write_iomap_end()

Support CoW - Remap extents after CoW

◼What is necessary
◼ Remap extents for CoW

• The new extent not been mapped

• Metadata not been updated

• File won’t contain the CoW extent

• Need to update metadata after CoW

◼How?
◼ Add remap in ->iomap_end()

• Do remap operation if is CoW

• Clean up if CoW operation fails

Copyright 2021 FUJITSU LIMITED

Y
if CoW?

remap extents

N

if error?
Y

clean up CoW extents

Nothing to do

N

38

Support dedupe - Add a ‘dax’ deduplication

◼ What is necessary
◼ Deduplicate DAX files

• Dedupe: reduce redundant data on storage costs

• Require a dedupe function
• Only have generic dedupe function

➢ compare data in page caches

• Not adapted to FSDAX

➢ no page cache

➢ directly compare data in NVDIMM

◼ Need a new dax compare function

◼ How?
◼ Introduce a DAX compare function

• Compare data by memcmp()

Copyright 2021 FUJITSU LIMITED

File A

compared same

File B

Extent I Extent II

DAX compare function

Kernel: FSDAX / Dedupe

FileA
->direct_access() => a_addr

FileB
->direct_access() => b_addr

memcmp(a_addr, b_addr, len)

result: same or not

39

Improve the current NVDIMM-based Reverse
mapping

◼Why Reverse mapping needs to be improved

◼ Struggling to solve this issue

◼ What must be implemented?

◼ How are they implemented?

Copyright 2021 FUJITSU LIMITED40

NVDIMM

When Memory failure occurs

Copyright 2021 FUJITSU LIMITED

file A

process 1

process 2

process 3

process 4

0xA000

0xA001

0xA002

0xA004

0xA005

0xA003

1. track all processes associating with the broken page on NVDIMM

2. send signal to kill those associated processes

broken

41

Need to improve NVDIMM-based Reverse mapping

◼ currently only support 1-to-1 mapping

◼ reflink on fsdax requires 1-to-N mapping

Copyright 2021 FUJITSU LIMITED

NVDIMM

0xA000

0xA001

0xA002

0xA004

0xA005

file A

process 1

process 2

process 3

VMA

VMA

VMA

file B

process 4

process 5

VMA

VMA

->mapping = mappingA
->index = offsetA

file … …

…

0xA003

Not supported yet

VMA

VMA

broken

42

Struggling to solve this issue

◼ First idea was simple, but it was bad idea

◼ Simply make rbtree for 1-to-N rmap

◼ Current strategy after some struggles

◼ Chase filesystem internal to find 1-to-N relationship

◼ What is difficulty of this way?

• Memory failure information is basically page unit.
But we need to find where it is in filesystem

• Filesystem may be created on partition, and/or LVM,
it affects relative offset in the filesystem

Copyright 2021 FUJITSU LIMITED

No! Cause of huge over head

see next page

First idea

mappingA
offsetA

mappingB
offsetB

mappingC
offsetC

rbroot
refcount

page->private
page->index

mappingA
indexA

page->mapping
page->index

NVDIMM
file A

0xA0400

43

Enhanced 1-to-N NVDIMM-based RMAP

File2

File3

Introduce 1-to-N NVDIMM-based RMAP

Copyright 2021 FUJITSU LIMITED

PMEM

Middle Layers Middle Layers

XFS EXT4

File1

System Memory

…

memory
failure

#MCE (Machine Check Exception)

Sharing DAX file

ProcessA
Kill now

ProcessB
Kill later

1. MCE triggers
◼ memory-failure

2. 1-to-N RMAP through
◼ mm layer

◼ device driver

◼ block device layer

◼ filesystem layer

◼ files

◼ processes

3. Kill processes according to related file
◼ Kill current immediately

◼ Kill others later

1

2

3

44

System Memory

What must be implemented?

1. RMAP from NVDIMM driver to dax device

2. RMAP from dax device to filesystem
◼ Introduce dax_holder registration mechanism

◼ Types of holder
• Filesystem

• Partition

• Mapped Device

3. RMAP from filesystem to file
◼ Require rmapbt feature

◼ Improve process collection and killing for FSDAX

4. Compatibility for no-reflink / no-rmapbt filesystem

◼ e.g., EXT4 does not support reflink & rmapbt

Copyright 2021 FUJITSU LIMITED

PMEM

Middle Layers

XFS

Middle Layers

EXT4

File

…

RMAP through all layers

1

2

File2

File3

43

45

1. RMAP from NVDIMM driver to dax device

Copyright 2021 FUJITSU LIMITED

◼ Translate the PFN number into offset within a dax device

◼ PMEM driver (FSDAX [/dev/pmem0])

• Linear offset translation

◼ Dax driver (DEVDAX [/dev/dax0.0])

• Calculate according to dax_ranges NVDIMM

0x000000xA0200

0xA0300

0xA0500

0xA0400

System Memory PFN NVDIMM offset

PMEM (/dev/pmem0)

dax device offset

0x00400

Dax (/dev/dax0.0)

…

…
… …

0x00500

0x00600

0xA0600

0xA0700

memory-failure
occurs on PFN(0xA0400)

46

2. RMAP from PMEM to filesystem (1/3)

Copyright 2021 FUJITSU LIMITED

◼ PMEM (FSDAX) may be used in different ways

1. Filesystem: XFS, EXT4…

2. Partitions

3. Mapped Device: LVM…

4. Nested by Partitions or mapped Devices

◼ Introduce dax_holder registration mechanism

◼ The holder represents the inner layer of a PMEM

◼ Register when holder being mounted / initialized

◼ Interface for notifying memory-failure

• holder_ops->notify_failure()

PMEM
Partition1

PMEM

XFS filesystem

PMEM
VG

XFS

Partition2

EXT4

LV1 LV2

PMEM
Partition1 Partition2
VG

LV1

Usages of PMEM

47

2. RMAP from PMEM to filesystem (2/3)

1. Filesystem as a holder

◼ mkfs directly on a PMEM

• `mkfs.xfs /dev/pmem0`

◼ No partition in PMEM

◼ Need translation

• Remove the fixed bdev header length

2. Partition as a holder

◼ Parted by tools

◼ More than one partitions

◼ Need translation

• iterate each partition’s range to get the location

• remove the offset of the partition header

Copyright 2021 FUJITSU LIMITED

PMEM

Partition1 Partition2

XFS EXT4

PMEM

XFS filesystem

bdev header

bdev header

Partition header

48

2. RMAP from PMEM to filesystem (3/3)

Copyright 2021 FUJITSU LIMITED

3. Mapped device as a holder
◼ Created by LVM or other tools

◼ No partition, but one or many dm targets

◼ Types of dm targets
• Linear, Raid, Crypt…

◼ Introduce RMAP from dm target to inner layer
• Implement dm_target->rmap() in each target

• This is reversed progress of the exist dm_target->map()

◼ Need translation
• Iterate targets in a Mapped device
• Find out which target is the broken PMEM

• Remove dm_target offset for the inner layer

• Continue RMAP in inner layer
• The inner layer is also a holder (filesystem, partition…)

PMEM1 PMEM2

EXT4XFS

LV1 LV2

VG

bdev header

dm_target
offset dm target 1 dm target 2

49

◼ Require filesystem has ‘rmapbt’ feature
◼ rmapbt: Given an offset and length, search for extents contains it

◼ XFS provides the query interface

• xfs_rmap_query_range()

◼ Search result could be

• File content

➢ Kill processes who are using this file

➢ Try to recovery file data according to XFS log device

• Filesystem metadata

➢ Hard to recovery online, shutdown filesystem and report error

◼ Improve process collection and killing for FSDAX
◼ The original method is page-based

• one page indicate one file (1-to-1)

◼ Need to be changed to file-based

Copyright 2021 FUJITSU LIMITED

3. RMAP from filesystem to file

50

4. Compatibility for no-reflink / no-rmapbt filesystem

◼ Need to keep the original 1 page-to-1 file association

◼ Associate page->mapping & ->offset

• Establish the RMAP relationship with page and file

◼ Not only keep the relationship, but also avoid the error

• Currently it reports error if called more than once

• Make it associate only once and only for the first time

◼ Need to keep the original RMAP routine

◼ The page-based memory-failure handler still works with support of above

◼ Fall back if 1-to-N RMAP routine get ‘-EOPNOTSUPP’

Copyright 2021 FUJITSU LIMITED

NVDIMM
file A

0xA0400

Associate

51

Summary of the new 1-to-N RMAP solution

◼ 1-to-N RMAP has been implemented

◼ compatible for all NVDIMM modes

◼ compatible for all usage of PMEM

◼ compatible for all filesystems

◼ What is the next?

◼ Need to fix the race condition against unbind

• With the help of 1-to-N RMAP, this can be fixed

• My new code is basically for one page(PTE or PMD) of memory failure

• Unbind is likely “a wide range of memory failure”, then we hope my code will help such case

Copyright 2021 FUJITSU LIMITED52

Conclusion

Copyright 2021 FUJITSU LIMITED53

We talked about the followings

◼ Basis of NVDIMM for Linux

◼ Issues of Filesystem-DAX (Direct Access mode)

◼ Deep dive to solve issues of Filesystem-DAX

• Support reflink & dedupe for fsdax

• Fix NVDIMM-based Reverse mapping

Copyright 2021 FUJITSU LIMITED

• Community has made many enhancement for NVDIMM on Linux
• We have worked for NVDIMM to remove experimental status of Filesystem DAX

• We hope it will be achieved as soon as possible

54

Copyright 2021 FUJITSU LIMITED55

Appendix

Copyright 2021 FUJITSU LIMITED56

How to use NVDIMM in Linux

◼ Make region
◼ You can configure it on BIOS screen (or ipmctl command for Intel DCPMM)

• Region is created by hardware (memory controller)

◼ You need to reboot to enable the created region

◼ Make namespace
◼ Namespace is similar concept against SCSI LUN

◼ You can configure it by ndctl command

◼ Format Filesystem (storage or Filesystem DAX)
◼ If you would like to use Filesystem DAX, you need to select ext4 or xfs which support Filesystem DAX

• Currently, if you select xfs, reflink option must be disabled

◼ Mount Filesystem (storage or Filesystem DAX) with –o dax option

◼ Make pool (Filesystem DAX or Device DAX) by the PMDK tool if necessary

Copyright 2021 FUJITSU LIMITED57

Users of NVDIMM at kernel layer

◼ dm-writecache

◼ Persistent cache for write at device mapper layer

• dm-cache can use SSD as cache, dm-writecache can use NVDIMM

• This presentation is helpful

• https://github.com/ChinaLinuxKernel/CLK2019/blob/master/clk2019-dm-writecache-04.pdf

◼ Kernel shows Device dax as DRAM

◼ Though Intel DCPMM has “Memory Mode” which user can use it as huge RAM, it has some pains

• Size of DRAM disappears, because it becomes just cache of NVDIMM

• Software cannot choose area between DRAM or DCPMM

◼ In this kernel feature, system RAM size becomes sums of DRAM and NVDIMM

• Use App Direct Mode and Device DAX namespace

• Use Memory Hot-add Device DAX area

• Becomes NUMA node

Copyright 2021 FUJITSU LIMITED58

https://github.com/ChinaLinuxKernel/CLK2019/blob/master/clk2019-dm-writecache-04.pdf

For log file

libpmemlog

For general purpose
pmem allocation with

transaction

libpmemobj

To create
same size blocks and

atomically update

libpmemblk

Transaction
support

PMDK (1/2)

◼ Set of libraries and tools for Filesystem DAX and Device DAX

Copyright 2021 FUJITSU LIMITED

Support for volatile
memory usage

libmemkind

libvmemcache

For local
persistent memory

For remote access to
persistent memory

libpmem2 librpmem

Low-level support

C C++ PCJ PythonLLPJ

Language bindings In Development:
PCJ – Persistent Collection for Java
LLPJ – Low-Level Persistent Java Library
Python bindings

libpmemkv

C C++ Java JS Ruby

59

Tools

back up

device dax
namespace

daxio

pool

management

pmempool

• Not only Linux, but also
you can use PMDK on
Windows Note

• Not all components are included in this figure
• To be precise libmemkind is not member of PMDK, but it is recommended library

libpmem

59

For log file

libpmemlog

For general purpose
pmem allocation with

transaction

libpmemobj

To create
same size blocks and

atomically update

libpmemblk

Transaction
support

PMDK (2/2)

◼ Typical libraries and tools

Copyright 2021 FUJITSU LIMITED

Support for volatile
memory usage

libmemkind

libvmemcache

For local
persistent memory

For remote access to
persistent memory

libpmem2 librpmem

Low-level support

C C++ PCJ PythonLLPJ

Language bindings In Development:
PCJ – Persistent Collection for Java
LLPJ – Low-Level Persistent Java Library
Python bindings

libpmemkv

C C++ Java JS Ruby

60

Tools

back up

device dax
namespace

daxio

pool

management

pmempool

libpmem

• The low layer library
• Call mmap() to use NVDIMM, call

suitable cpu cache flush
instruction, etc…

• Libpmem2 is newer library.
Though it has some new feature,
API is different from old libpmem

60

For log file

libpmemlog

For general purpose
pmem allocation with

transaction

libpmemobj

To create
same size blocks and

atomically update

libpmemblk

Transaction
support

PMDK (2/2)

◼ Typical libraries and tools

Copyright 2021 FUJITSU LIMITED

Support for volatile
memory usage

libmemkind

libvmemcache

For local
persistent memory

For remote access to
persistent memory

libpmem2 librpmem

Low-level support

C C++ PCJ PythonLLPJ

Language bindings In Development:
PCJ – Persistent Collection for Java
LLPJ – Low-Level Persistent Java Library
Python bindings

libpmemkv

C C++ Java JS Ruby

61

Tools

back up

device dax
namespace

daxio

pool

management

pmempool

libpmem

• The high layer library which supports transaction of the objects on DAX
• For general use-case
• This is highly recommended library in PMDK
• Users need to understand how to use its transaction

61

For log file

libpmemlog

For general purpose
pmem allocation with

transaction

libpmemobj

To create
same size blocks and

atomically update

libpmemblk

Transaction
support

PMDK (2/2)

◼ Typical libraries and tools

Copyright 2021 FUJITSU LIMITED

Support for volatile
memory usage

libmemkind

libvmemcache

For local
persistent memory

For remote access to
persistent memory

libpmem2 librpmem

Low-level support

C C++ PCJ PythonLLPJ

Language bindings In Development:
PCJ – Persistent Collection for Java
LLPJ – Low-Level Persistent Java Library
Python bindings

libpmemkv

C C++ Java JS Ruby

62

Tools

back up

device dax
namespace

daxio

pool

management

pmempool

libpmem

• /dev/dax (device DAX) is
character device. Then you
cannot use dd for backup

• daxio command is
provided instead of it

62

What is new of libpmem2

◼ New low-layer library

• Introduce new concept “GRANULARITY”

• PMEM2_GRANULARITY_PAGE : for traditional SSD/HDD

• PMEM2_GRANULARITY_CACHELINE : for persistent memory (the case for process needs flush cache to
make persistency)

• PMEM2_GRANULARITY_BYTE : for persistent memory (the case for platform support cpu cache
persistency)

• Introduce new functions to get unsafe shutdown status and bad block

• This library uses library of ndctl command internally to get these information

◼ Its interface is different from old libpmem

Copyright 2020 FUJITSU LIMITED63

Library for RDMA (1/2)

◼ I think RDMA is becoming important for NVDIMM

◼ DAX offers direct access method for local NVDIMM

• However, modern system is a set of many computers which is connected by network

• So, remote access is also important

◼ Traditional network stacks is too heavy to access remote NVDIMM

◼ Use case

• For scalability

• Ex) Distributed filesystem, Key Value Store, etc….

• For make data replication

• Replace of NVDIMM module is difficult (as I talked at China Linux Kernel Developer Conference)
https://www.slideshare.net/ygotokernel/the-ideal-and-reality-of-nvdimm-ras-newer-version

• Etc.

Copyright 2021 FUJITSU LIMITED

RDMA is a good way to skip some redundant processing to access remote NVDIMM

64

https://www.slideshare.net/ygotokernel/the-ideal-and-reality-of-nvdimm-ras-newer-version

Library for RDMA (2/2)

◼ librpma

◼ The 2nd library for RDMA

• The 1st library is librpmem of
PMDK, but it is experimental

• Not popular with users

• Librpma has been developed
with user’s requirement

◼ Characteristics

• Relatively easier interface than
libibverbs

• Consideration of making
persistency for remote NVDIMM
• Though hardware can return ack before write

completion, user can confirm it with librpma

• See: https://www.openfabrics.org/wp-content/uploads/2020-workshop-presentations/202.-gromadzki-ofa-workshop-2020.pdf
(*) The above table is quoted from this presentation

Copyright 2021 FUJITSU LIMITED65

https://www.openfabrics.org/wp-content/uploads/2020-workshop-presentations/202.-gromadzki-ofa-workshop-2020.pdf

