
Writing GRUB modules in Rust
—
Daniel Axtens

What this is and is not

A discussion of writing Rust modules in GRUB.

A talk by a GRUB hacker and C programmer.

Not an effort to replace GRUB.

Not an effort to rewrite all of GRUB in Rust.

Not an effort to make Rust a requirement for
building GRUB.

Not an effort to drop or reduce support for your
platform of choice.

Not an effort to break backwards compatibility.

Not a talk by a Rust language expert (yet).

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 2

Why bother with Rust
in GRUB?

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 3

Why Rust?

Squash unsafety bugs
Rust makes it much harder* to
have buffer overflows, uses-
after-free, and other nasty bugs.

With pure C, we are restricted to
trying hard or fuzzing everything.

Trying hard hasn’t worked for us
before, and hasn’t worked for
anyone else.

Fuzzing is reactive at best.

* you can do anything in an
unsafe {} block but at least
it’s highlighted.

C compatible
Rust supports the ELF ABI
which GRUB uses (even on e.g.
UEFI platforms with other
calling conventions to firmware)

Rust can call C code.

Rust can be called from C code,
including via function pointers.

Rust doesn’t have a
heavyweight runtime.

Platform support is
decent
Rust (based on LLVM) supports
a range of platforms.

But not all of them: no support
for e.g. Itanium

Rust support for architectures
that might do UEFI secure boot
or Power secure boot is
otherwise good.

We can provide both C and Rust
versions of a module while
GRUB supports architectures
that Rust doesn’t.

Rust has been used in
this domain before
There is a decent body of work
using Rust in embedded
systems.

The Rust for Linux project has
dealt with the complexities of
interoperating with C and non-
Rust build systems in a very
similar domain and we can learn
from them.

GRUB modules provide an
excellent ground for
experimentation and proof-of-
concept.

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 4

Rough proportion of bugs due to memory
unsafety in large C/C++ codebases

~70%

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 5

https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/

Recent GRUB CVEs relating to memory
unsafety

~40%

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 6

–Memory unsafety: CVE-2020-27749, CVE-2021-
20233, CVE-2021-20225, CVE-2020-25647, CVE-
2020-25632, CVE-2020-15706, CVE-2020-10713*
(n=6/7)

–Logic error: CVE-2020-15705, CVE-2021-3418, CVE-
2020-27779, CVE-2020-14372, CVE-2020-10713*
(n=4/5)

–Integer overflow: CVE-2020-15707, CVE-2020-
14309, CVE-2020-14310, CVE-2020-14311, CVE-
2020-14308 (n=5) – all leading to potential memory
corruption

– *CVE-2020-10713 – yylex not fatal enough: logic bug
leads to exploitable memory corruption

–Total n=16

Show me the code

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 7

Show me the code, the ‘something has gone wrong with screen sharing’ edition

Where to from here?
Questions the GRUB project
needs to decide.

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 17

Do we want Rust in GRUB?

How much do we want to interact with the Rust
build system, cargo?
● Completely bypass it? (Rust for Linux)
● Use it to build rust modules? (my early RFC)
● Rewrite our build system around it? (lol)

Should we target a specific version of Rust?

Rust for Linux does this – Rust 1.54 and the
unstable features therein.

What about platforms with no or broken Rust
support?

Are we happy providing 2, largely functionally
identical, sets of modules?

How will we deal with the alloc failure → panic
problem?

Rust for Linux has had to address this but I haven’t
looked at how they do it yet.

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 18

Other questions

How do we build .lst files in the presence of Rust
modules?
● E.g. dyncmd reads command.lst to autoload a

module when the relevant command is called.
● command.lst is generated by looking for things

like COMMAND_LIST_MARKER in a bundle of
preprocessed sources.

● Rust does not use the C preprocessor.
● Rust will probably have to specify {commands,

file systems, terminals, …} explicitly – should C
do that too?

How will we support Rust’s built in testing
framework? (and formatting and linting from the
Rust ecosystem)

Rust for Linux has a solution to this but I haven’t
fully comprehended it yet.

How much do we want to directly borrow from
Rust for Linux?
● GPLv3+ vs GPLv2
● Do we still need FSF copyright assignments?

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 19

Your questions

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 20

Thank you

Daniel Axtens
Linux Security Engineer
—
daniel.axtens1@ibm.com
dja@axtens.net

The views expressed in this presentation are those of the author, not necessarily those of IBM.
© Copyright IBM Corporation 2021. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of
any kind, express or implied. Any statement of direction represents IBM’s current intent, is subject to change or withdrawal, and represent only goals and objectives. IBM, the IBM logo,
and ibm.com are trademarks of IBM Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available at Copyright and trademark information.

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 21

mailto:daniel.axtens1@ibm.com
mailto:dja@axtens.net
https://www.ibm.com/legal/copytrade#Color%20palette

Linux Plumbers Conference, Systems Boot and Security Microconf / September 2021 / © 2021 IBM Corporation 22

