
Problem: select_idle_cpu() not scalable
▪ SIS_PROP not work as expected

▪ Idle core scan not throttled at all

▪ Idle CPU scan not throttled very well

▪ Select_idle_cpu() scale poorly, searching up to max number of LLC CPUs frequently

1

0

10

20

30

40

50

60

70

80

90

100

task_48 task_96 task_144 task_192 task_384

P
e

rc
e

n
ta

g
e

select_idle_cpu exits case percentage

idle_core idle_cpu SIS_PROP idle_no_found

0

10

20

30

40

50

60

task_48 task_96 task_144 task_192 task_384

N
u

m

Idle CPU Scan Num Average

idle_core idle_cpu SIS_PROP idle_not_found

0

10

20

30

40

50

60

task_48 task_96 task_144 task_192 task_384

N
u

m

Idle CPU Scan Max Num

idle_core idle_cpu SIS_PROP idle_not_found

▪ Hardware: 4 nodes , 96 cores, 192 CPUs (24core/48HT in one LLC domain)

Proposal: Idle CPU Mask
▪ Track Idle CPUs per LLC domain

▪ Bit Set every Idle entry

▪ Bit Clear every scheduler tick if not idle (update ratelimited)

▪ Task wakeup path very sensitive to change

▪ Scan efficiency improved but performance not universal win

2

-15

-10

-5

0

5

10

15

25% 50% 75% 100% 200%

P
e

rc
e

n
ta

g
e

Load Level

Hackbench Process Mode

-15

-10

-5

0

5

10

15

25% 50% 75% 100% 200%

P
e

rc
e

n
ta

g
e

Load Level

Netperf UDP mode

-15

-10

-5

0

5

10

15

25% 50% 75% 100% 200%

P
e

rc
e

n
ta

g
e

Load Level

Tbench

-15

-10

-5

0

5

10

15

25% 50% 75% 100% 200%

P
e

rc
e

n
ta

g
e

Load Level

Schbench

▪ Kernel: V5.14 V.S. Idle_CPU_mask V10

Cluster Topology Level
• Hardware Topology

• ARM64 Kunpeng920 32/24cores share LLC, each 4 cores of them share L3 tag/internal bus
• X86 Jacobsville has 24 cores sharing LLC, but each 4 cores sharing L2

• Needs
• Add scheduler level for cluster to support load balance between clusters to decrease resource

contention and increase memory bandwidth
 SPECrate mcf has up to +25.1% on Jacobsville ; + 13.574% on Kunpeng920

 stream has up to +19.85% on Kunpeng920

 Patch V1 sent after several RFCs, expecting review:

https://lore.kernel.org/lkml/20210820013008.12881-1-21cnbao@gmail.com

• Scan cluster before scanning LLC in wake_affine to leverage the lower
communication latency within cluster
 much more tricky; RFC sent but formal patch not yet. Latest version:

https://op-lists.linaro.org/pipermail/linaro-open-discussions/2021-June/000219.html

https://lore.kernel.org/lkml/20210820013008.12881-1-21cnbao@gmail.com
https://op-lists.linaro.org/pipermail/linaro-open-discussions/2021-June/000219.html

Scanning cluster first
• https://op-lists.linaro.org/pipermail/linaro-open-discussions/2021-June/000221.html

Prototype:

For unpinned apps -> much more tricky
 scanning cluster has scanned 4 CPUs and spent some time, how to adjust

select_idle_cpu() for scanning avg time and SIS accordingly?
 Seeing idle CPU even system is busy; seeing -2% performance on busy mysqld;

removing this “return” and always doing further scan can give positive
performance on mysql

Pgbench pinning one numa

Friendly to apps pinning NUMA(lift cluster to “LLC”)

https://op-lists.linaro.org/pipermail/linaro-open-discussions/2021-June/000221.html

Hemisphere

Power 10 CHIP

Core/LLC Core/LLC

Core/LLC

Core/LLC

Core/LLC

Core/LLC

Core/LLC

Core/LLC

Hemisphere

Core/LLC Core/LLC

Core/LLC

Core/LLC

Core/LLC

Core/LLC

Core/LLC

Core/LLC

Prefer idle(r) cores to cache affinity

At task wakeup, Current scheduler
● Chooses CPU based on load of previous + waking CPU.
● Find an idle core or idle CPU (within chosen CPU LLC).
● On systems with lesser cores per LLC:

– Maybe no idle cores in chosen LLC, idle cores in other LLC.
● Chosen LLC may have lower idle CPUs compared other LLC.
● Doesn't consider different cache latencies between LLCs within

the socket.
– Nearby LLC idler than the chosen LLC.

Idle core
/ LLC

Waker
CPU

Previous
CPU

Proposed Solution : Idler LLC approach
● Maintain a list of idle cores per LLC.
● If waker and previous CPUs are from a different LLCs.

– Choose a LLC which has idle core.
– If no idle cores select a CPU whose LLC has more idle CPUs.
– Else fallback to existing approach.

Fallback LLC Approach: (Archs that support different
Cache latencies)

● Select an idle core within the parent sched-domain on
the chosen LLC.

● - If no idle cores in parent sched-domain, select a CPU
whose LLC has more idle CPUs.

Busy

Idle

Searching idle cpu/core
● Looking for an idle CPU takes time

○ It impacts local running task
○ Delays task wake up

● Limit the time spent for searching an idle CPU
○ Don’t waste time searching a nonexistent idle cpu
○ At some point it’s better to simply wake up locally and let LB migrate task

● Using local avg idle is often misleading
○ Do not reflect other CPUs state but only reflect local cpu state

● Using local cpu and task load/utilization
○ Long running task vs missing short idle cpu
○ Short running task vs a lightly loaded local cpu

