
Why we can’t have 
nice things

Jason Ekstrand, LPC 2021

The beautiful future of userspace-controlled 
synchronization and why it’s not possible



Special blame



Current status of GPU 
synchronization in Linux



We have a lot of synchronization primitives

Linux kernel:

● struct dma_fence
● struct dma_resv
● struct sync_file
● struct drm_syncobj
● struct drm_syncobj (timeline)

X11:

● xshmfence

Wayland:

● wl_callback

OpenGL/EGL:

● glFinish()

● glWaitSync()

● glReadPixels()

● Many other GL calls, implicitly

Vulkan:

● VkFence

● VkSemaphore

● VkSemaphore (timeline)

And many more….



In the kernel, everything 
is struct dma_fence



What is struct dma_fence?

A struct which represents a (potentially future) event:

● Has a boolean “signaled” state

● Has a bunch of useful utility helpers/concepts:
○ Reference-counted

○ Callback-based wait mechanism

○ Lazy CPU-signal binding (good for GPU <-> GPU sync inside a driver)

Provides two very useful guarantees:

● One-shot: once signaled, will be signaled forever

● Finite-time: once exposed, is guaranteed signal in a reasonable amount of time



Finite-time guarantee of dma_fence

The finite-time guarantee for dma_fence has several important implications:

● Cannot have circular dependencies
● Nothing which is required for signaling a dma_fence may fail

○ Most locks not allowed on the dma_fence signal path
○ Memory allocation must be GFP_NOWAIT/GFP_ATOMIC

● If the GPU or other HW hangs:
○ Reset the chip
○ Kill the userspace connection
○ Signal all associated fences

● You can wait on a struct dma_fence in kernel-space
○ May block swapping, BO migration, the shrinker, etc.

This is really nice for the kernel!



Userspace wants control



AMD and Intel want to side-step the kernel

Intel has plans for a direct-to-firmware submit model:

● Kernel still manages memory and global resources

● Userspace tells the kernel which resources should be resident

● Userspace submits batches directly to firmware

● In theory, this should be faster and lower-latency

AMD and Arm have expressed similar plans for their future GPUs

Intel has an emulation of this called ULLS, being used for compute today



High-performance clients want timelines

Vulkan recently added the VK_KHR_timeline_semaphore extension:

● Each semaphore is a single 64-bit integer value

● Signaling sets a higher value (must increase)

● Waiting waits on the value to be >= target

● Supports CPU and GPU signal/wait

● Replaces both old-school VkSemaphore and VkFence

This looks a lot like what we all do inside our drivers….

It’s the same model game developers get in D3D12 via Monitored Fence on Windows 10

● Among other things, it’s a way better model for multi-threaded engines



High-performance clients want timelines

Vulkan timeline semaphores come with some caveats:

● Naturally supports wait-before-signal

● Clients can deadlock themselves
○ Client gets to keep the pieces if this happens

We’ve emulated timeline semaphores using timeline struct drm_syncobj:

● Userspace driver has a thread for managing outstanding requests

● Batches aren’t submitted to the kernel until all dependencies are resolved

● Any deadlocks stay in userspace

This really isn’t as efficient as we’d like...



Compute doesn’t happen in finite time

For 3D, almost everything completes in < 1s

● Typical monitor refresh is 60 Hz

● Games get unplayable below 20 Hz

In compute, this isn’t true

● The GPU is just another processor, with a giant pile of cores

● Simulations often run for hours, days, or weeks

● Why shouldn’t a kernel run on the GPU for 3 days?

● You can’t use struct dma_fence for “Is my compute job done yet?”



The glorious future!



One possible model:
Userspace Memory Fence (UMF)

Basically, expose the common seqno concept directly to userspace:

● Store a 64 or 32-bit value in CPU mappable memory
○ Windows requires it to live in system memory, maybe we should too?

● Signaling is done by writing to memory and maybe signaling an interrupt
○ Might be done by the kernel as part of the exec ioctl

○ Userspace may want to do this itself!

● CPU waits are done with an ioctl similar to futex()
○ Maybe we can just use futex()?

● For GPU waits, the exec ioctl takes a pointer and a target value
○ Maybe also a configurable comparison operator?

This would let us implement timeline semaphores directly!



Other possible models

Other possible models exist but I won’t enumerate them all here

… because they all have the same problems. 😦



The actual future



Why so bleak?



None of userspace 
works this way



Why not wrap it in a 
struct dma_fence?



We can’t trust userspace

No more “finite time” guarantee

● Userspace may never bother to signal it

● Userspace might signal it wrong

● Userspace may deadlock

Ok, fine, so throw a timeout on it.  That should work, right?.....



Userspace can’t trust us

Let’s assume userspace submits a bunch of jobs with an acyclic dependency graph

● We don’t know what that graph looks like

● We might want to move some memory around

● That adds dependencies to the graph

● Now there’s a cycle

● So a fence times out and we kill the userspace context

● But userspace didn’t do anything wrong!



Solution pt. 1: Separate memory and execution 
synchronization

This is what Intel has prototyped to get some stuff working:

● Memory management happens separately from execution synchronization

● Internal kernel dependency tracking happens via struct dma_fence
○ TTM etc. use it everywhere

● Sync with userspace happens via userspace memory fences

● Internal kernel stuff never waits on a UMF!

● If you need to move memory, you preempt, move, restore

● Preempt happens in finite time so you can block dma_fence on it

Depends on preemption, but all the big GPUs can do that these days



Why don’t you just do 
that, then?



We still want to interoperate

Our 3D drivers need to talk to X11, Wayland, Android, etc:

● X11 and (old) Wayland use implicit sync (struct dma_fence in the BO)

● Modern Wayland and Android use sync file (wrapper around struct dma_fence)

● EGL, CL<->GL interop, etc. all require implicit sync

● …

If a job waits on a userspace fence, it cannot be used to signal a struct dma_fence!



What are our options?
 Spoiler: They all suck!



Options?

Option 1: Re-plumb everything to support UMF

● All kernel drivers need strict memory/execution sync separation

● Need a new userspace-facing sync primitive to pass around

● All userspace drivers, compositors, etc. need updating

Option 2: Wait in userspace before passing off to another process

● Neatly solves all the deadlock problems

● No more cross-process pipelining -> higher latency

● Totally breaks wayland

Option 3: Be much more clever than me?



Suggestions?



Inside the kernel, there’s only one

Everything is a struct dma_fence:

● struct dma_resv is a container of dma_fences
○ One exclusive fence or many shared fences

● struct sync_file is a container for turning a dma_fence into a file
○ Supports poll() to wait on the fence

● struct drm_syncobj is just a dma_fence* and a lock
○ Syncobj ioctls allow userspace to modify the pointer (not the dma_fence)

● Timeline struct dma_syncobj is a syncobj where the fence is a struct dma_fence_chain
○ Singly linked list of fences with associated timeline values

○ Automatically prunes signaled fences so it doesn’t grow unbounded


