

Documenting the Heterogeneous Memory Model Architecture

Felix Kuehling

Background

- HMM provides powerful tools for driver developers
- Motivated by earlier attempts to partially implement in drivers
 - Using get_user_pages, MMU notifiers
 - Prone to race conditions, lock dependency issues
 - Different (buggy) solutions in different drivers
- New functionality not previously possible
 - ZONE_DEVICE represents device pages in VMAs
 - Page-based migration of anonymous memory to ZONE_DEVICE
- Existing documentation written mostly for driver developers
 - https://www.kernel.org/doc/html/latest/vm/hmm.html

Questions raised recently

Architectural questions raised by MM and FS experts:

- Should ZONE_DEVICE pages be pfn_valid?
- Does page_lock guarantee exclusive access to ZONE_DEVICE pages
- How does FS know when pages are dirtied by a device
- How does demand-paging in and out of device memory work
- How does I/O to/from ZONE_DEVICE pages work
- Where is the architecture documentation?

Immediate goal

- Add DEVICE_PUBLIC support for Frontier
 - Aiming for v5.16
- Need consensus from affected MM and FS maintainers
 - Add any new documentation needed to establish consensus

Future areas of interest

- Migration of file-backed pages to ZONE_DEVICE
 - Demand-paging of large data sets
 - Loading compute shader code with mmap
- Replication of shared, read-only pages on multiple devices
 - Optimize access performance, memory usage for compute shader code
- Improve THP handling
 - We've seen migrations of huge pages fail in some cases
 - GPU page tables can handle huge pages (2MB, 1GB)
- P2P with other HMM clients
 - Avoid CPU faults on peer access to DEVICE_PRIVATE (e.g. RDMA)