
LTTng as a fast system call tracer

 Linux Plumbers Conference - September 2021

1

Mathieu Desnoyers
EfficiOS Inc.



Problem and Goals

● Fast tracing of system calls with their input/output 
argument payload,

● Current upstream ring buffers cannot handle page faults 
while copying user-space data into the buffers,
○ Prevents zero-copy of user-space data into buffers. 

2



Current Status
● Upstream tracer ring buffers are tuned for their specific 

use-cases:
○ Perf is specialized for sampling,
○ Ftrace is specialized for tracing at high speed with 

preemption disabled.
● None of the upstream tracers allow reading user-space 

data reliably:
○ Perf and Ftrace only trace the register contents on 

system call entry/exit,
○ eBPF uses a zero-padding fallback when a fault 

would occur.
● System call tracers based on ptrace such as strace are 

slow due to scheduling and ptrace peek overhead.

3



Proposed Solution
● Upstream a new tracer based on components of the 

LTTng kernel tracer,
● Relevant components:

○ LTTng’s ring buffer is designed to be used both in 
the kernel and from user-space, thus allowing 
preemption and page faults,

○ An ABI derived from the LTTng kernel tracer, 
allowing interaction with an existing ecosystem of 
user-space trace tooling:
■ Expose concepts compatible with the LTTng tracer 

user-space tooling,
■ Common Trace Format consumed by trace 

viewers.

4



Open Questions

● How do we implement the code which copies system 
call arguments into buffers ?
○ Macros,
○ Open coded with static inline/macro helpers,
○ … ?

● Is the scope of this project reasonable:
○ Brings enough value to be upstreamed ?
○ Reviewable within a reasonable effort ?

5


