
Container tracing

Yordan Karadzhov

VMware Inc. - OSTC



How do we define a container?

a. This thing created by Docker

b. Something that is compliant withe the OCI Runtime Specification

c. A bunch of processes isolated in namespaces and governed by cgroups

Tracing containerized workloads sounds attractive, but we first have to agree what we mean
by this.



Hooking to a container that is being created

• We need the PID of the parent process of the container
• And we need it as early as possible.

System calls involved in setuping the container:
1. mkdir() : to create the cgroups. Can filter for new directories in /sys/fs/cgroup/*

2. unshare() : to move the parent process into new namespaces. *

▶ Alternatives: clone() and setns()
3. pivot_root() : to changes the root mount. *

* The caller is the parent process of the container.



Hooking to a running container:

1. Examine the cgroups. For example, look in
/sys/fs/cgroup/<some cgroup>/docker/<container id>/tasks

2. Examine the Docker runtime
/run/containerd/io.containerd.runtime.v2.task/moby/<container id>/init.pid
and find all child processes.

3. Retrieve the layers of the container image from
/proc/<container parent pid>/mounts
If we brute-force /proc we can get the list of running container images.
Some extra work is needed to separate the different instances of the same container.

• Anything else we can do?
• Is there a standard we can use?



Some ideas on what we want to trace:
• Files a container opens

▶ Files a container reads
▶ Files a container writes to

• What programs are executed

• What libraries are utilized

• Networks a container connects to

• How to follow a service through a container?

• How do containers on different nodes interact?

• Anything else?


