
Puzzle for RISC-V ifunc
Kito Cheng (SiFive)

 Palmer Dabbelt (Google)

Agenda

- What’s IFUNC?
- What’s The Status of RISC-V Support for IFUNC?
- What Are We Missing?
- Dicussion:

- Design of HWCAP2?

2

What’s IFUNC

- https://sourceware.org/glibc/wiki/GNU_IFUNC
- The GNU indirect function support (IFUNC) is a feature of the GNU toolchain

that allows a developer to create multiple implementations of a given function
and to select amongst them at runtime using a resolver function

strcmp (version A)

strcmp (version B)

strcmp (version C)

strcmp resolver

int foo(){
 strcmp (...);
}

3

What’s The Status of RISC-V Support for IFUNC?

- RISC-V have basic support for ifunc:
- glibc’s infrstracture.
- ifunc relocation for RISC-V

- Added at Feb. 2020
- https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/131

- Workable PoC?
- SiFive has an internal implmenation, but isn’t complete solution yet.

- That’s why there is this session here :p

- The vector, bit manipulation and crypto extension is comming soon!
- We need optimize serveral funciton via ifunc soon!

strcmp (Generic)

strcmp (B-ext)

strcmp (V-ext)

strcmp resolver

int foo(){
 strcmp (...);
} 4

What Are We Missing?

● No Mechnish to Disable/Enable Specfic Extension.
● No Function Target Attribute for C/C++

○ e.g. int sse3_func (void) __attribute__ ((__target__ ("sse3")));
● hwcap is Not Enoght to Detect ISA Feature.

5

No Mechnish to Disable/Enable Specfic Extension

● Why it’s problem?
○ Build glibc with rv64gc

■ Build strcmp_vec.c with rv64gcv
■ Build strcmp_bitmanip.c with rv64gc_zbb

○ How to specifiy the build option?
■ Hardcode CFLAGS -march=rv64gcv for strcmp_vec.c and -march=rv64gc_zbb for

strcmp_bitmanip.c?
● Yes, that’s what we did in our PoC...

6

No Mechnish to Disable/Enable Specfic Extension (cont.)

● We have .option norvc/rvc to disable / enable RVC extension, but no option
for all other extensions…

● -march option need to specify full arch string in *canonical order*.
○ -march=$(ARCH)_v

■ Not work well due to it might not satify canonical order…
■ ARCH=rv64gc_zbb then we got rv64gc_zbb_v which is invalid ISA string.

○ We might consider to extend the complication option.
■ e.g

● -march=+v?
● -march=$(ARCH)+v

○ -march=rv64gc_zbb+v

7

Proposal for Disable/Enable Specfic Extension

- Extend .option directive.
- https://github.com/riscv-non-isa/riscv-asm-manual/pull/67

- .option arch, +<ext>
- .option arch, +v

- Enable vector extension for folloing code region.
- .option arch, -<ext>

- .option arch, -c (=== .option norvc)
- Disable C extension for folloing code region.

- .option arch, =<full-isa-str>
- .option arch, =rv64gcv

- Set arch to rv64gcv for folloing code region.
- Work with .option push/.option pop

8

No Function Target Attribute for C/C++

● Other target has provide target attribute to specify a function compiled with
specify target option.

○ int sse3_func (void) __attribute__ ((__target__ ("sse3")));
■ sse3_func will compile with sse3, no matter it’s enabled by CFLAGS or not.

● RISC-V did’t define that yet.
○ That’s OK for short-term, but we must have for long term.

● Note, this feature depend on `.option arch, ` directive.

9

hwcap is Not Enoght to Detect ISA Feature.

● HWCAP using similar scheme with misa register layout:
○ One bit per extension.

■ 1st bit for A extension
■ 2nd bit for B extension
■ …
■ 22 bit for V extension.

○ But...RISC-V have bunch of multi-letter extension now!!
■ Vector family: v, zve64d, zve64f, zve64x, zve32f, zve32x, zvl128b...and more.
■ Bit manipulation familiy: zba, zbb, zbc, zbs
■ Crypto family: zkn, zbkb, zbkc, zbkx, zknd, zknh...and more.

○ Vendor extension can’t detect by hwcap.
■ X-bit only indicate there is vendor ext., but which vendor ext.?

● We need to define the hwcap2 to detech hardware features, or some other
mechnish to detect in user space!

○ That’s major goal of this session, that’s need to coordniate with kernel and glibc folks.

10

Proposals for hwcap2

● Use hwcap2 as extended hwcap
○ Not work, just extend extra 32 bits...

● Treat hwcap2 as pointer.
● Raw ISA string with explicity version number, like RISCV_Tag_ARCH:

○ rv64i2p0_m2p0_a2p0_f2p0_d2p0_c2p0_v1p0
○ Easy to pass, but pain to parse.

● Preprocessed ISA string linked list:
○ struct rv_hwcap2 {const char *ext; unsinged major; unsinged minor; struct rv_hwcap2 *next;};
○ Easy to parse and traverse.

● Bit vector scheme with variable lenght encoding
○ ULEB128 encoding for hwcap2, and allocating 1 bit per extension.
○ Pain to encoding version and manage the bit, not friendly for vendor extension.

● Leverage configuration-structure, and use DER or PER encoding (defined in ASN.1)
○ Pain to parse…

■ https://github.com/riscv/configuration-structure
● Variant of one of the above, mixture of above or other proposals?
● Or...don’t use hwcap2?

11

AT_PLATFORM, AT_BASE_PLATFORM or other RISC-V specific AT_* Value?

● AT_PLATFORM and AT_BASE_PLATFORM are
○ https://man7.org/linux/man-pages/man3/getauxval.3.html

■ AT_BASE_PLATFORM
● A pointer to a string (PowerPC and MIPS only). On PowerPC, this

identifies the real platform; may differ from AT_PLATFORM. On
MIPS, this identifies the ISA level (since Linux 5.7).

■ AT_PLATFORM
● A pointer to a string that identifies the hardware platform that the

program is running on. The dynamic linker uses this in the
interpretation of rpath values.

● Both value are return NULL for RISC-V now.

12

Special Thanks

● Fangrui Song (MaskRay)@Google for adding ifunc relocation.
● Greentime@SiFive Hu for the kernel part for vector support.
● Vincent Chen@SiFive for RISC-V vector IFUNC implemenation.
● Nelson Chu@SiFive for binutils PoC implemenation.

13

Few Other Puzzles...

- Mapping Symbol
- Assist disassmbler to work with ovelapping instruction encoding.

- https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/196
- Optional for IFUNC but nice to have.

-

14

Thanks :)

15

