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Life is complicated
Most (published) data for RISC-V is focused on small benchmarks
● Dhrystone 
● EEMBC Coremark

This is not surprising, as these benchmarks are well-understood, require for 
resources and are easy to work with.

As RISC-V starts to target the desktop and servers, we need to expand to cover
● larger benchmarks
● prioritize improvements “where it matters most”

Our focus is SPEC CPU 2017.



SPEC CPU 2017
A large, standardised benchmark suite
● Integer and Floating point
● Single core vs. whole system
● Has built-in validation and comes with well-defined run rules
● Industry standard for “real-world” benchmarking of Linux servers

However
● It comes with a license agreement
● Requires large memory and has considerable runtime

○ … but this is an area where we can do something about



The competitive landscape
Others (e.g. ARM) had focused efforts to optimize for these benchmarks
● Kyrylo’s talk at the 2019 Cauldron
● ARM’s announcement of auto-vectorization improvements for x264
● Intel’s ICC and AMD’s AOCC have considerable optimisations for this

Life is even harder, as we currently don’t have RVV (which will benefit some of 
the benchmark components) and Zb[abcs] ratified.

https://gcc.gnu.org/wiki/cauldron2019talks?action=AttachFile&do=get&target=Optimising+SPEC+CPU+2017+with+GCC.pdf
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/update-on-gnu-performance


Our methodology
Built on open-source
● QEMU

○ plug-ins to capture dynamic execution profile
○ out-of-band analysis of the captured data

● GCC and LLVM

Analysis happens mainly by hand
● Improvements planned to automate common tasks…

Why QEMU (and not perf)?
● Lack of hardware (especially for non-ratified extensions…)
● Unbeatable performance and access to large main memory

○ We easily run the ‘ref’ workload in for SPEC…
● Unbiased by any specific micro-architecture & allows sharing of data…



Example use-cases
Some of the questions we have started to look into…

● Instruction histograms for the Zb[abcs] instructions
● The expected benefit of CBO.ZERO (and confirming that it works…)
● Code-generation quality in the backend



How Zb[abcs] are we?



Postfix zero-extension… or not.



Is CBO.ZERO beneficial?
memset factors prominently on gcc_r 
● ~2.7% of dynamic instructions 

spent in the unrolled loop that 
stores 64 bytes

● It’s is a memset(…, 0, …) and can 
be replaced with CBO.ZERO
○ At least a 1.855% reduction in 

dynamic instructions…

● Valuable data for both software 
and hardware architects

  0x00000000007f8250 5204299716 2.0632% memset
      e314              sd              a3,0(a4)
      e714              sd              a3,8(a4)
      eb14              sd              a3,16(a4)
      ef14              sd              a3,24(a4)
      f314              sd              a3,32(a4)
      f714              sd              a3,40(a4)
      fb14              sd              a3,48(a4)
      ff14              sd              a3,56(a4)
      04070713          addi            a4,a4,64
      187d              addi            a6,a6,-1
      fe0815e3          bnez            a6,-22          # 0x7f8250

  0x00000000007f824c 198411200 0.0787%  memset
      8846              mv              a6,a7
      873e              mv              a4,a5
      e314              sd              a3,0(a4)
      e714              sd              a3,8(a4)
      eb14              sd              a3,16(a4)
      ef14              sd              a3,24(a4)
      f314              sd              a3,32(a4)
      f714              sd              a3,40(a4)
      fb14              sd              a3,48(a4)
      ff14              sd              a3,56(a4)
      04070713          addi            a4,a4,64
      187d              addi            a6,a6,-1
      fe0815e3          bnez            a6,-22          # 0x7f8250

Dynamic instructions



Spotting trouble in the backend
Looking at the top contributors to 
dynamic instruction count helps spot 
worthwhile backend improvements.
● “Interesting” pattern of 

extensions around the minu
● Missed opportunities to use 

add.uw and sh2add.uw
(following the minu)

● 35% reduction for this block, 
which will reduce the dynamic 
instruction count by 1.85%

  0x0000000000013098 21482319614 5.2940% bt_find_func
      001e1b1b          slliw           s6,t3,1
      08040c3b          add.uw          s8,s0,zero
      080b0bbb          add.uw          s7,s6,zero
      080f0ebb          add.uw          t4,t5,zero
      08038cbb          add.uw          s9,t2,zero
      41d60eb3          sub             t4,a2,t4
      0b9c5d33          minu            s10,s8,s9
      01ae8b33          add             s6,t4,s10
      20fbce33          sh2add          t3,s7,a5
      01a60c33          add             s8,a2,s10
      000d071b          sext.w          a4,s10
      000b4b83          lbu             s7,0(s6)
      000c4303          lbu             t1,0(s8)
      046b8263          beq             s7,t1,68        # 0x13110

Dynamic instructions



Finding FIXMEs in ree.c
.LVL412:
        .loc 17 273 17 is_stmt 1
#(insn:TI 665 896 1001 (set (reg:SI 6 t1 [192])
#        (plus:SI (reg:SI 6 t1 [orig:93 len ] [93])
#            (const_int 1 [0x1]))) "liblzma/lz/lz_encoder_mf.c":273:17 3 {addsi3}
#     (nil))
        addiw   t1,t1,1 # 665   [c=4 l=4]  addsi3/1
.LVL413:
        .loc 17 274 11 is_stmt 0
#(insn 257 1001 258 (set (reg:DI 28 t3 [orig:193 _20 ] [193])
#        (zero_extend:DI (reg:SI 6 t1 [192]))) "liblzma/lz/lz_encoder_mf.c":274:11 325 
{*zero_extendsidi2_bitmanip}
#     (nil))
        zext.w  t3,t1   # 257   [c=4 l=4]  *zero_extendsidi2_bitmanip/0
#(insn 258 257 666 (set (reg/f:DI 18 s2 [194])
#        (plus:DI (reg/v/f:DI 14 a4 [orig:96 pb ] [96])
#            (reg:DI 28 t3 [orig:193 _20 ] [193]))) "liblzma/lz/lz_encoder_mf.c":274:11 4 
{adddi3}
#     (nil))
        add     s2,a4,t3        # 258   [c=4 l=4]  adddi3/0
        .loc 17 273 17
#(insn 666 258 1002 (set (reg/v:DI 6 t1 [orig:93 len ] [93])
#        (sign_extend:DI (reg:SI 6 t1 [192]))) "liblzma/lz/lz_encoder_mf.c":273:17 118 
{extendsidi2}
#     (nil))
        sext.w  t1,t1   # 666   [c=4 l=4]  extendsidi2/0

     /* Third, make sure the reaching definitions don't feed another and
         different extension.  FIXME: this obviously can be improved.  */
      for (def = defs; def; def = def->next)
        if ((idx = def_map[INSN_UID (DF_REF_INSN (def->ref))])
            && idx != -1U
            && (cand = &(*insn_list)[idx - 1])
            && cand->code != code)
          {
            if (dump_file)
              {
                fprintf (dump_file, "Cannot eliminate extension:\n");
                print_rtl_single (dump_file, insn);

fprintf (dump_file, " because of other extension\n");
              }
            return;
          }

Cannot eliminate extension:
(insn 666 257 252 33 (set (reg/v:DI 6 t1 [orig:93 len ] [93])

(sign_extend:DI (reg:SI 6 t1 [192]))) 
"liblzma/lz/lz_encoder_mf.c":273:17 118 {extendsidi2}
     (nil))
 because of other extension



Next steps
Our “backlog” of things to work on
● Contribute the tools (especially the QEMU plug-in) back to the community
● Address the spotted code-generation issues
● Improve the analysis tools

○ Automate
○ Spot common problems
○ Compare individual benchmarking runs

● Add more benchmarks to improve coverage
● Run tests in additional configurations (e.g. RV32)



Community thoughts?
We encourage discussion on how we can make this into a useful tool to 
advance the RISC-V ecosystem: 
● Is anyone else working on SPEC CPU 2017 performance
● Can we integrate this with GEM-5 and/or SPARTA
● How do we best share the infrastructure and jointly build analysis tools

○ Public hosting of results and co-existence with perf-results…

● What other benchmarks and workloads should be to considered
● How to best collaborate

○ Avoid duplicating effort…
○ …and share observations with actual micro-architectures between organisations.

● How to avoid useless work for the maintainers and get this committed


