
Towards a continuous improvement
of code-generation for RISC-V…

Philipp Tomsich, VRULL

Life is complicated
Most (published) data for RISC-V is focused on small benchmarks
● Dhrystone
● EEMBC Coremark

This is not surprising, as these benchmarks are well-understood, require for
resources and are easy to work with.

As RISC-V starts to target the desktop and servers, we need to expand to cover
● larger benchmarks
● prioritize improvements “where it matters most”

Our focus is SPEC CPU 2017.

SPEC CPU 2017
A large, standardised benchmark suite
● Integer and Floating point
● Single core vs. whole system
● Has built-in validation and comes with well-defined run rules
● Industry standard for “real-world” benchmarking of Linux servers

However
● It comes with a license agreement
● Requires large memory and has considerable runtime

○ … but this is an area where we can do something about

The competitive landscape
Others (e.g. ARM) had focused efforts to optimize for these benchmarks
● Kyrylo’s talk at the 2019 Cauldron
● ARM’s announcement of auto-vectorization improvements for x264
● Intel’s ICC and AMD’s AOCC have considerable optimisations for this

Life is even harder, as we currently don’t have RVV (which will benefit some of
the benchmark components) and Zb[abcs] ratified.

https://gcc.gnu.org/wiki/cauldron2019talks?action=AttachFile&do=get&target=Optimising+SPEC+CPU+2017+with+GCC.pdf
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/update-on-gnu-performance

Our methodology
Built on open-source
● QEMU

○ plug-ins to capture dynamic execution profile
○ out-of-band analysis of the captured data

● GCC and LLVM

Analysis happens mainly by hand
● Improvements planned to automate common tasks…

Why QEMU (and not perf)?
● Lack of hardware (especially for non-ratified extensions…)
● Unbeatable performance and access to large main memory

○ We easily run the ‘ref’ workload in for SPEC…
● Unbiased by any specific micro-architecture & allows sharing of data…

Example use-cases
Some of the questions we have started to look into…

● Instruction histograms for the Zb[abcs] instructions
● The expected benefit of CBO.ZERO (and confirming that it works…)
● Code-generation quality in the backend

How Zb[abcs] are we?

Postfix zero-extension… or not.

Is CBO.ZERO beneficial?
memset factors prominently on gcc_r
● ~2.7% of dynamic instructions

spent in the unrolled loop that
stores 64 bytes

● It’s is a memset(…, 0, …) and can
be replaced with CBO.ZERO
○ At least a 1.855% reduction in

dynamic instructions…

● Valuable data for both software
and hardware architects

 0x00000000007f8250 5204299716 2.0632% memset
 e314 sd a3,0(a4)
 e714 sd a3,8(a4)
 eb14 sd a3,16(a4)
 ef14 sd a3,24(a4)
 f314 sd a3,32(a4)
 f714 sd a3,40(a4)
 fb14 sd a3,48(a4)
 ff14 sd a3,56(a4)
 04070713 addi a4,a4,64
 187d addi a6,a6,-1
 fe0815e3 bnez a6,-22 # 0x7f8250

 0x00000000007f824c 198411200 0.0787% memset
 8846 mv a6,a7
 873e mv a4,a5
 e314 sd a3,0(a4)
 e714 sd a3,8(a4)
 eb14 sd a3,16(a4)
 ef14 sd a3,24(a4)
 f314 sd a3,32(a4)
 f714 sd a3,40(a4)
 fb14 sd a3,48(a4)
 ff14 sd a3,56(a4)
 04070713 addi a4,a4,64
 187d addi a6,a6,-1
 fe0815e3 bnez a6,-22 # 0x7f8250

Dynamic instructions

Spotting trouble in the backend
Looking at the top contributors to
dynamic instruction count helps spot
worthwhile backend improvements.
● “Interesting” pattern of

extensions around the minu
● Missed opportunities to use

add.uw and sh2add.uw
(following the minu)

● 35% reduction for this block,
which will reduce the dynamic
instruction count by 1.85%

 0x0000000000013098 21482319614 5.2940% bt_find_func
 001e1b1b slliw s6,t3,1
 08040c3b add.uw s8,s0,zero
 080b0bbb add.uw s7,s6,zero
 080f0ebb add.uw t4,t5,zero
 08038cbb add.uw s9,t2,zero
 41d60eb3 sub t4,a2,t4
 0b9c5d33 minu s10,s8,s9
 01ae8b33 add s6,t4,s10
 20fbce33 sh2add t3,s7,a5
 01a60c33 add s8,a2,s10
 000d071b sext.w a4,s10
 000b4b83 lbu s7,0(s6)
 000c4303 lbu t1,0(s8)
 046b8263 beq s7,t1,68 # 0x13110

Dynamic instructions

Finding FIXMEs in ree.c
.LVL412:
 .loc 17 273 17 is_stmt 1
#(insn:TI 665 896 1001 (set (reg:SI 6 t1 [192])
(plus:SI (reg:SI 6 t1 [orig:93 len] [93])
(const_int 1 [0x1]))) "liblzma/lz/lz_encoder_mf.c":273:17 3 {addsi3}
(nil))
 addiw t1,t1,1 # 665 [c=4 l=4] addsi3/1
.LVL413:
 .loc 17 274 11 is_stmt 0
#(insn 257 1001 258 (set (reg:DI 28 t3 [orig:193 _20] [193])
(zero_extend:DI (reg:SI 6 t1 [192]))) "liblzma/lz/lz_encoder_mf.c":274:11 325
{*zero_extendsidi2_bitmanip}
(nil))
 zext.w t3,t1 # 257 [c=4 l=4] *zero_extendsidi2_bitmanip/0
#(insn 258 257 666 (set (reg/f:DI 18 s2 [194])
(plus:DI (reg/v/f:DI 14 a4 [orig:96 pb] [96])
(reg:DI 28 t3 [orig:193 _20] [193]))) "liblzma/lz/lz_encoder_mf.c":274:11 4
{adddi3}
(nil))
 add s2,a4,t3 # 258 [c=4 l=4] adddi3/0
 .loc 17 273 17
#(insn 666 258 1002 (set (reg/v:DI 6 t1 [orig:93 len] [93])
(sign_extend:DI (reg:SI 6 t1 [192]))) "liblzma/lz/lz_encoder_mf.c":273:17 118
{extendsidi2}
(nil))
 sext.w t1,t1 # 666 [c=4 l=4] extendsidi2/0

 /* Third, make sure the reaching definitions don't feed another and
 different extension. FIXME: this obviously can be improved. */
 for (def = defs; def; def = def->next)
 if ((idx = def_map[INSN_UID (DF_REF_INSN (def->ref))])
 && idx != -1U
 && (cand = &(*insn_list)[idx - 1])
 && cand->code != code)
 {
 if (dump_file)
 {
 fprintf (dump_file, "Cannot eliminate extension:\n");
 print_rtl_single (dump_file, insn);

fprintf (dump_file, " because of other extension\n");
 }
 return;
 }

Cannot eliminate extension:
(insn 666 257 252 33 (set (reg/v:DI 6 t1 [orig:93 len] [93])

(sign_extend:DI (reg:SI 6 t1 [192])))
"liblzma/lz/lz_encoder_mf.c":273:17 118 {extendsidi2}
 (nil))
 because of other extension

Next steps
Our “backlog” of things to work on
● Contribute the tools (especially the QEMU plug-in) back to the community
● Address the spotted code-generation issues
● Improve the analysis tools

○ Automate
○ Spot common problems
○ Compare individual benchmarking runs

● Add more benchmarks to improve coverage
● Run tests in additional configurations (e.g. RV32)

Community thoughts?
We encourage discussion on how we can make this into a useful tool to
advance the RISC-V ecosystem:
● Is anyone else working on SPEC CPU 2017 performance
● Can we integrate this with GEM-5 and/or SPARTA
● How do we best share the infrastructure and jointly build analysis tools

○ Public hosting of results and co-existence with perf-results…

● What other benchmarks and workloads should be to considered
● How to best collaborate

○ Avoid duplicating effort…
○ …and share observations with actual micro-architectures between organisations.

● How to avoid useless work for the maintainers and get this committed

