

Problem And Goals
● Allow user mode applications to create, open

and send diagnostic data to trace_event /
dyn_event
– Minimal overhead, especially when nothing is listening

to the trace_event
– Works across multiple languages/binary types and

many cgroups without entering each namespace
– Works with standard capture and analysis techniques

(ftrace, perf, eBPF)

Problem Scenario
● Have: Many processes running within many cgroups using different

languages (Python, Go, Rust, C/C++, C#, Java)
– Single monitoring agent in root namespace, entering namespaces as

required to find correct paths, PIDs, etc
– Multiple mechanisms to collect, have to merge/decode to get to a unified view

● Want: All user and kernel events into a single eBPF program or trace
buffer/file without entering cgroup namespaces
– Need consistent aux data when event is emitted (PMU data, Stack data, etc)
– Want to avoid having to mix collection mechanisms and merge/decode

afterwards
– Want to avoid a daemon/agent with each cgroup/namespace

Proposed ABI
● Creation / Open

– event_fd = open(“/sys/kernel/tracing/user_events_data”);
– event_id = ioctl(REG, “MyUserEvent”)
– MyUserEvent is now available to be used in code and also via tracefs, perf, eBPF,

etc as a trace_event / dyn_event.
● Writing / Emitting Data

– write(event_fd, “MyData”); /* Only works after REG IOCTL */
● Status

– events_page = mmap(“/sys/kernel/tracing/user_events_mmap”);
– if (events_page[event_id]) { /* write, etc. event_id from ioctl(REG) */ }
– Bits 0-6 describe system listening (ftrace, perf, etc). Bit 7 reserved for “Others”
– All Bits clear if nothing is listening

Proposed Flow Diagram

perf_probe probe

trace_event_class

probe register callbacks

events_page

mmap

user process

write ioctl

create

lookup or create

data

perf / eBPF ftrace

trace_event_call

tracepoint

pass data to probes

	Page 1
	Page 2
	Page 3
	Page 4

