

DTrace based on BPF and tracing facilities:
Challenges

dr. Kris Van Hees
Languages and Tools
Linux Engineering
<kris.van.hees@oracle.com>

DTrace and BPF

● D code compiled into BPF functions
● Dynamic generation of trampoline BPF programs
● Pre-compiled function library (C-to-BPF)
● Built-in linker to generate standalone BPF programs
● D supports local, global, and TLS variables
● D supports arrays, aggregations, dynamic variables,

string functions, alloca/bcopy/...

Origins

● Bleeding edge functionality is cool
● Bleeding edge functionality solves many problems
● Production systems don’t run bleeding edge

kernels
● Real life use cases usually originate on production

systems

We can’t...

● … tell customers to upgrade their systems
● … tell customers to wait for new features
● …
● …
● …
● … tell customers to ignore reality!

Problem: Spill register to stack

● Store constant value from reg to stack
● Load it back → constant value in reg
● Store known (bounded) value from reg to stack
● Load it back → unknown value in reg

Fixed on Jul 13, 2021, first appeared in v5.14-rc4

Solution: Spill register to stack

● Store known (bounded) value from reg to stack
● Load it back → unknown value in reg
● Insert explicit bounds check(s) on the reg

– Conditional jumps provide this info to the verifier
– But be careful….!!!

Problem: branch prediction bug

● Conditional branch comparing %rD against %rS
● %rD = bounded value, %rS = constant value
● Prediction is attempted and bounds are updated
● %rD = constant value, %rS = bounded value
● No prediction is attempted and bounds are updated

incorrectly

No patch for this problem in bpf-next (yet)!

Problem: branch prediction bug

[...]

BPF: 185: frame1: R0=invP0 R1_w=invP24 ...

R5=invP(id=0,umin_value=17,umax_value=20,var_off=(0x10; 0x7)) ...

BPF: 185: (3d) if r1 >= r5 goto pc+10

BPF:\240 frame1: R0=invP0 R1_w=invP24 ...

R5=invP(id=0,umin_value=25,umax_value=20,var_off=(0x10; 0x7)) ...

BPF: 186: frame1: R0=invP0 R1_w=invP24 ...

R5=invP(id=0,umin_value=25,umax_value=20,var_off=(0x10; 0x7)) ...

[...]

Solution: branch prediction bug

static int check_cond_jmp_op(struct bpf_verifier_env *env,
 struct bpf_insn *insn, int *insn_idx)
{
 ….
 } else if (src_reg->type == SCALAR_VALUE &&
 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
 pred = is_branch_taken(dst_reg,
 src_reg->var_off.value,
 opcode,
 is_jmp32);
 } else if (src_reg->type == SCALAR_VALUE &&
 !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
 pred = is_branch_taken(src_reg,
 dst_reg->var_off.value,
 flip_opcode(opcode),
 is_jmp32);
 } ...
…
}

I will submit a patch for it this week.

Problem: resource limits

● Tracing scripts can get pretty complex
● String manipulation functions
● alloca(), bcopy()
● Associative arrays
● Dynamically allocated variables
● Need more memory than the stack provides

Problem: resource limits (cont.)

● BPF map, singleton element, large value size
● Use value as addressable memory
● Limitations:

– Verifier cannot validate anything stored/loaded
– Values are plain integers (can’t use as pointers)
– Limited space (KMALLOC_MAX_SIZE)

Solution (?): resource limits

● Option 1: Allow BPF maps with larger value size
● Option 2: Use multiple map values

– A form of paged memory (map value is like a page)
– Cumbersome (ptr + offset + addr translation vs ptr)

● Option 3: New (per-cpu) memory resource
– Does not need to be visible to userspace
– Large (bounded) size – needs to be preallocated
– Possible bpf_malloc() / bpf_free() helper support?

Other issues...

● Complex scripts and functions need loops
– More complex invariant state detection needed
– Invariant relations between values in registers

● Why are the CPU registers (pt_regs) not accessible from the
BPF context for some program types?

● Compilers (LLVM, GCC) generating code that is valid but
cannot be validated by the verifier

● Userspace validation → signed BPF programs?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

