
Kernel cgroups and namespaces: can they contribute to freedom from
interference claims?

Presenters

Priyanka Verma
Senior Software quality

Engineer
Functional Safety

In-vehicle OS

Bruce Benson
Sr Automation Engineer (QE)

Functional Safety
In-vehicle OS

Agenda:
● Why Freedom From Interference (FFI) is important in modern FuSa systems
● Cgroups and Namespaces Overview
● Contributions to FFI claim

Why Freedom From Interference (FFI) is important in
modern FuSa systems

What is FFI?
Freedom From Interference is the absence of cascading failures between two or more
elements that could lead to the violation of a safety requirement.

It can be described here as: A fault in a less safety-critical (software) component will not lead
to a fault in a more safety-critical (software) component.

Why Freedom From Interference (FFI) is
important in modern FuSa systems

An automotive system consists of multiple software components that interact with each other.
The presence of cascading failure from a non-ASIL or a lower ASIL component to a higher
ASIL component will lead to one or many safety goal violations.

Types of interference
● Spatial interference - space or memory interference
● Temporal interference - time or CPU interference
● Communication interference - communication channel interference

Why Freedom From Interference (FFI) is
important in modern FuSa systems

Automotive system designers are adopting powerful multicore+GPU SoCs that are capable of
running diverse workloads concurrently. This prompts thoughts of convergence.

ASILB HW

ASILB Linux Kernel

QM App ASILB App How cgroups and namespaces
contribute to the FFI claim?

What are the interference types where
these features are more effective?

FFI

❖ All containers running on a host ultimately
share the same kernel (somewhere) and
system resources.

❖ A control group (cgroup) is a Linux kernel
feature that limits, accounts for, and isolates
the resource usage (CPU, memory, disk I/O,
network, and so on) of a collection of
processes.

❖ Namespaces are then used to limit the
visibility of a process into the rest of the
system in an exclusive view. This uses the
IPC, mnt, net, PID, user, cgroup, time, and
UTS namespace subsystems.

Cgroup and Namespaces Recap

Cgroup

Cgroup provide the following features (“QoS-like things”):

❖ Resource limits – a cgroup can be configured to limit how much of a particular resource
(memory or CPU, for example) a process can use.

❖ Using cgroup not only imposes limitation on CPU and memory usage; it also limits
accesses to device files, net, and I/O.

❖ Prioritization – how much of a resource (CPU, disk, or network) a process can use can be
controlled compared to processes in another cgroup when there is resource contention.

❖ Accounting – Resource limits are monitored and reported at the cgroup level.

❖ Control – the status can be changed (frozen, stopped, or restarted) for all processes in a
cgroup with a single command.

Namespaces

❖ Namespaces form a major technology that containers are built on, used to enforce separation of
resources and their views (“virt-like things”).

❖ Container runtimes like Docker, rkt, CRI-O/podman, LXD, gVisor, Kata, LXC and others make
development easier by creating namespaces on behalf of the dev and providing opinionated structure and
defaults.

❖ There are several different kinds of namespaces supported by Linux:

➢ Unix Timesharing System (UTS)
➢ Process IDs
➢ Mount points (filesystems)
➢ Network
➢ User and group IDs
➢ Inter-process communication (IPC)
➢ Control groups (cgroup)
➢ Time

Contributions to FFI claim

As given in ISO 26262 Part-6, Annex D.2.1: “The effects of the exemplary
faults, and the propagation of the possible resulting failures can be
considered.”

To create isolation, a container engine mainly relies on these two Linux
kernel features: namespace and cgroups.

To give the container its own view of the system (isolated from other
resources), a namespace is created for each of the resources and
unshared from the remaining system. Control groups (cgroups) are also
set and used to monitor and limit system resources like CPU, memory,
disk I/O, network, etc.

For further security perspective, the container engine can leverage any
OS security isolation techniques like seccomp, caps, and LSM —such as
AppArmor/SELinux access control—to isolate faults within containers.

(a vendor-specific strategy) SELinux, especially Multi-Category Security
(MCS), is central to our support of container separation. In containers we
use SELinux to help prevent container attacks against each other and
host system resources.

Major categories of isolation capabilities
...and questions

Time interference (“delaying”):
❖ Some cores can be made invisible to a specific container. Moreover, cgroups allow limit of CPU and memory usage.
❖ Can we rely on containers for temporal FFI? Exhaustion? Latency?
❖ What is the role of containers if we have an external flow control monitor?

Spatial interference (“scribbling”):
❖ Containers support lightweight spatial isolation by providing each container with its own resources (e.g., CPU pins,

memory limits, and network and I/O buckets) along with container-specific namespaces.
❖ Physical devices can be hidden from certain containers, hence cannot be manipulated regardless.

Communication interference (“jamming”):
❖ If we don't want containers to communicate with each other at all we can set ICC (inter-container communication) to

disabled. A network’s configuration cannot be changed after creation. So, enabling ICC on an existing network isn't
possible.

❖ If a communication channel is open between two containers, how do we prevent one container spamming the other?

