
Kernel testing frameworks
Brendan Higgins

Shuah Khan



Why kselftest?

● Regression test suite
● Focuses on testing kernel from user-space
● User-space applications (Shell scripts, C programs)

○ Kernel Test modules used to exercise kernel code paths
● Allows for breadth and depth coverage (error paths etc.)
● Not for workload or application testing



Why kselftest?

● Perfect for feature, functional and regression testing
● Perfect for bug fix focused regression testing and subsystem testing
● Perfect for testing user APIs, system calls, critical user paths, common use cases
● Perfect for end to end regression testing

○ Provides assurance that “everything works”
● Combination of Open and Closed box testing
● For more information on Kselftest framework/run/write tests

○ Watch LF Live Mentorship webinar:
■ Kernel Validation With Kselftest

https://events.linuxfoundation.org/mentorship-session-kernel-validation-with-kselftest/


Why KUnit?

● Focuses on in-kernel testing
● Perfect for:

○ testing internal kernel APIs
○ libraries, drivers, …,
○ individual units of code

● Perfect for unit testing
○ Makes it tractable to test all the edge cases



McCabe’s Complexity

● Testing all edge cases?
○ Imagine trying to reach an arbitrary edge case in the kernel from a syscall
○ Reaching every state is intractable

● Solution: Call functions directly to test edge cases



McCabe’s Complexity

● Solution: Call functions directly to test edge cases
● McCabe’s complexity is a measure of the number of states, or branches a function can 

achieve
● If we have a function, A, call other functions, B1, B2, …, Bn, and we only test A

○ If we try to reach all branches from A, you can see that as the function depth 
increases, the total number of branches increases combinatorially

○ If we only reach all the states of each function individually, the branches increase 
linearly.

● KUnit is a really practical way to test the vast majority of edge cases.



McCabe’s Complexity

● Solution: Call functions directly to test edge cases
● McCabe’s complexity is a measure of the number of states, or branches a function can 

achieve
● If we have a function, A, call other functions, B1, B2, …, Bn, and we only test A

○ If we try to reach all branches from A, you can see that as the function depth 
increases, the total number of branches increases combinatorially

○ If we only reach all the states of each function individually, the branches increase 
linearly.

● KUnit is a really practical way to test the vast majority of edge cases.
● For more background info on KUnit like this please see LF Live Mentorship webinar: KUnit 

Testing Strategies

https://events.linuxfoundation.org/mentorship-session-kunit-testing-strategies/
https://events.linuxfoundation.org/mentorship-session-kunit-testing-strategies/


GCOV: How to coverage

● GCOV keeps track of code run during 
execution

● Generates reports
● Show what code ran, and what code

did not



GCOV: How to coverage

● Shows directory level summaries



GCOV: How to coverage

● Shows directory level summaries



GCOV: How to coverage

● Shows directory level summaries
● Shows overall summary as coverage number



Code Coverage IS

● A great way to quickly find what code IS tested and what code IS NOT tested.
● Allows you to quickly identify problem areas, and drill down into a report.
● Identify missed branches.
● Identify unused code.



Code Coverage IS: Example

● Imagine we are testing some code:



Code Coverage IS: Example

● Imagine we are testing some code:
● We can see that we have edge cases for

○ DEV_PM_QOS_MIN_FREQUENCY
○ DEV_PM_QOS_MAX_FREQUENCY

●



Code Coverage IS: Example

● Imagine we are testing some code:
● We can see that we have edge cases for

○ DEV_PM_QOS_MIN_FREQUENCY
○ DEV_PM_QOS_MAX_FREQUENCY

● The report shows us that our tests do not 
cover these edge cases.



Code Coverage IS: Example

● Imagine we are testing some code:
● We can see that we have edge cases for

○ DEV_PM_QOS_MIN_FREQUENCY
○ DEV_PM_QOS_MAX_FREQUENCY

● The report shows us that our tests do not 
cover these edge cases.

● This shows the power of KUnit with 
coverage

○ We can (and do) call this function 
directly in tests



Code Coverage IS NOT

● Code coverage is a tool, not a panacea
● Code coverage helps quickly identify and prioritize problem areas
● Code coverage summaries do not tell you whether your testing is good or bad

○ What is the right amount of line coverage?
○ 50%?
○ 70%?
○ 90%?
○ 100%?



What’s the right coverage?

● How do we measure coverage?
○ % of lines?
○ % of functions?
○ % of branches?

● What about absolute vs incremental?



What’s the right coverage?

● Absolute coverage:
○ What you expect.
○ Everything in the entire codebase at some point in time.

● Incremental coverage:
○ The test coverage of the 𝚫 in a change



Absolute vs. Incremental Coverage

● Incremental Coverage is usually more interesting
○ It’s much easier to achieve high incremental coverage immediately
○ Helps prioritize code more likely to be buggy
○ More actionable by developers
○ Code that has not changed in a long time is more likely to be fine



Absolute vs. Incremental Coverage

● Absolute Coverage is still important, just less important
○ Old code may be less likely to contain bugs…
○ ...but it’s often worse when it does

● Often easier for comparing coverage health of subsystems
● Easier to compute



Kselftest & KUnit

● Kselftest
○ Good for depth testing covering deeper code paths
○ Good for testing commonly used code paths
○ A good test could test some error paths

● KUnit
○ Good for targeting error paths & edge cases
○ Easier and faster for zeroing in on a kernel area



Kernel Dependability - Safety critical space

● Code coverage important for Safety?
● Kselftest & KUnit

○ Improvements that could be made?
○ More tests for coverage?
○ More tests for regression?
○ ????


