

Adding kernel-specific test coverage to
GCC's -fanalyzer option

David Malcolm <dmalcolm@redhat.com>
Carlos O'Donell <carlos@redhat.com>

mailto:dmalcolm@redhat.com

Overview

● Condensed version of Monday’s talk:
– What is -fanalyzer ?
– Demo of detecting kernel CVEs

● Discussion

Caveat

● I’m a compiler developer not a kernel developer!
– I’m hoping for input from kernel experts on this

● What is -fanalyzer ?
● A new interprocedural GCC pass (added in GCC 10)

– Only useful for C code at the moment

● Performs a much more expensive analysis of the code than traditional GCC warnings
– GCC 10: 15 warnings, mostly relating to malloc/free
– GCC 11: 7 more, for 22 warnings, plus plugin support; big rewrite of internals
– GCC 12 (in development): 1 more (uninit values), for 23 warnings, plus working on kernel-specific

warnings

● Neither sound nor complete: can have false negatives and false positives
– Various heuristics to try to explore all paths through the code whilst terminating in a reasonable

time (merging some states, keeping others distinct)
– Various approximations: of state, and of “shortest feasible path”

Looking at historical kernel
CVEs

● What can I extend the analyzer to detect?
– Infoleaks (information disclosure)

● Uninitialized kernel memory being copied to user space
● Relatively easy to detect, relatively low severity (mitigated by new -

ftrivial-auto-var-init option in GCC 12)

– Taint (data from untrusted source used at trusting sink)
● e.g. user-space/network data used as array index/allocation size
● Harder to detect, relatively higher importance (denial of service, privilege

escalation, etc)

Infoleak detection (1):
CVE-2017-18549

#define AAC_SENSE_BUFFERSIZE 30
struct aac_srb_reply
{

__le32 status;
__le32 srb_status;
__le32 scsi_status;
__le32 data_xfer_length;
__le32 sense_data_size;
u8 sense_data[AAC_SENSE_BUFFERSIZE];

};

Infoleak detection (2):
CVE-2017-18549

static int aac_send_raw_srb(/* [...snip...] */, void __user *user_reply)
{

/* [...snip...] */

struct aac_srb_reply reply;

reply.status = ST_OK;
/* [...snip...] */
reply.srb_status = SRB_STATUS_SUCCESS;
reply.scsi_status = 0;
reply.data_xfer_length = byte_count;
reply.sense_data_size = 0;
memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);

if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
 ..etc...

}

Infoleak detection (3):
CVE-2017-18549

infoleak-CVE-2017-18549-1.c: In function ‘aac_send_raw_srb’:
infoleak-CVE-2017-18549-1.c:66:13: warning: potential exposure of sensitive information by copying uninitialized data from
stack across trust boundary [CWE-200] [-Wanalyzer-exposure-through-uninit-copy]
 66 | if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
 | ^~~~
 ‘aac_send_raw_srb’: events 1-3
 |
 | 52 | struct aac_srb_reply reply;
 | | ^~~~~
 | | |
 | | (1) source region created on stack here
 | | (2) capacity: 52 bytes
 |......
 | 66 | if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
 | | ~~
 | | |
 | | (3) uninitialized data copied from stack here
 |

Infoleak detection (4):
CVE-2017-18549

infoleak-CVE-2017-18549-1.c:66:13: note: 2 bytes are uninitialized
 66 | if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
 | ^~~~
infoleak-CVE-2017-18549-1.c:37:25: note: padding after field ‘sense_data’ is
uninitialized (2 bytes)
 37 | u8 sense_data[AAC_SENSE_BUFFERSIZE];
 | ^~~~~~~~~~
infoleak-CVE-2017-18549-1.c:52:30: note: suggest forcing zero-initialization by
providing a ‘{0}’ initializer
 52 | struct aac_srb_reply reply;
 | ^~~~~
 | = {0}

Taint detection (1)
CVE 2011-0521

/* Example edited for brevity. */
struct ca_slot_info_t {

int num; /* slot number */
ca_slot_info_t ci_slot[2];

} sbuf;
if (copy_from_user(&sbuf, (void __user *)arg, sizeof(sbuf)) != 0)
 return -1;
ca_slot_info_t *info= &sbuf;
if (info->num > 1)
 return -EINVAL;
av7110->ci_slot[info->num].num = info->num;
/* ...etc... */

Taint detection (2)
CVE 2011-0521 (cont’d)

taint-CVE-2011-0521.c: In function ‘test_1’:
taint-CVE-2011-0521.c:321:40: warning: use of attacker-controlled value ‘*info.num’ in array lookup
 without checking for negative [CWE-129] [-Wanalyzer-tainted-array-index]
 321 | av7110->ci_slot[info->num].num = info->num;
 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
 ‘test_1’: events 1-5
 |
 | 310 | if (copy_from_user(&sbuf, (void __user *)arg, sizeof(sbuf)) != 0)
 | | ^
 | | |
 | | (1) following ‘false’ branch...
 |......
 | 313 | struct dvb_device *dvbdev = file->private_data;
 | | ~~~~~~
 | | |
 | | (2) ...to here

Taint detection (3)
CVE 2011-0521 (cont’d)

 |......
 | 318 | if (info->num > 1)
 | | ~
 | | |
 | | (3) following ‘false’ branch...
 |......
 | 321 | av7110->ci_slot[info->num].num = info->num;
 | | ~~
 | | | |
 | | | (5) use of attacker-controlled value
‘*info.num’ in array lookup without checking for negative
 | | (4) ...to here
 |

Marking trust boundaries

extern long copy_to_user(void __user *to, const void *from, unsigned long n)
 __attribute__((access (untrusted_write, 1, 3),

 access (read_only, 2, 3)));
extern long copy_from_user(void *to, const void __user *from, long n)
 __attribute__((access (write_only, 1, 3),

 access (untrusted_read, 2, 3)));

#define __SYSCALL_DEFINEx(x, name, ...) \
asmlinkage __attribute__((tainted)) \
long sys##name(__SC_DECL##x(__VA_ARGS__))

struct configfs_attribute {
/* … */
ssize_t (*store)(struct config_item *, const char *, size_t) __attribute__((tainted));

};

Integration testing

● Can we detect problems when using the system
kernel headers?

● antipatterns.ko – the world’s worst kernel module?
– https://github.com/davidmalcolm/antipatterns.ko
– Ideas/patches for other tests most welcome

https://github.com/davidmalcolm/antipatterns.ko

-fanalyzer on the kernel

● I have an automated script to build a custom GCC, and
the build the kernel using it

● Takes about 4 hours to build a kernel with -fanalyzer on
a fast machine

● Running it on Fedora, RHEL, and upstream kernels
– Fixing false positives

● Found an issue in “allyesconfig” upstream kernel

Current Status

● Infoleak detection:
– not yet in GCC trunk, but mostly ready to go in, but:

● What should syntax be?
● Where should code live?

● Taint detection:
– I’m still working on this; hope to have it done by GCC 12 feature

freeze
● Similar syntax/scope considerations apply

Topics we could talk about

● Is this useful?
– Any ideas on improvements to output format?
– Ideas for other things to test for?

● Is this useful for dependability and assurance?
– (given false positives and false negatives)

● How to integrate this into kernel development workflow?
● What else do people want to talk about?

More Info

● Project homepage:
https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer

● Thanks for listening/participating!
● Thanks to LPC for hosting us

https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer

Bonus slides

● (taken from Monday’s talk at the GNU tools track)

Internal Implementation

● Builds an “exploded graph” combining control flow
and data flow

● Nodes in this graph have both:
– Program point (CFG location and call stack)
– State

Internal Implementation (2)

● State at a node includes:
– Symbolic memory regions with symbolic values

● e.g. “global variable ‘g’ has value 42”

– Constraints on symbolic values
● e.g. “INIT_VAL(i) < INIT_VAL(n)”

– State machines:
● Per-value

– heap: e.g. “this is a freed pointer”
– taint: “this value is unsanitized and attacker-controlled”

● Global: “are we in a signal handler?”

Internal Implementation (3)

● Neither sound nor complete: can have false negatives
and false positives

● Diagnostics are:
– Captured at nodes
– De-duplicated
– Checked for feasibility (path conditions)
– Expressed to the user using paths through the code

GCC 10: 15 new warnings
● -Wanalyzer-double-free
● -Wanalyzer-use-after-free
● -Wanalyzer-free-of-non-heap
● -Wanalyzer-malloc-leak

● -Wanalyzer-possible-null-argument
● -Wanalyzer-possible-null-dereference
● -Wanalyzer-null-argument
● -Wanalyzer-null-dereference

-Wanalyzer-double-fclose
-Wanalyzer-file-leak

-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-use-of-pointer-in-stale-stack-
frame

-Wanalyzer-unsafe-call-within-signal-
handler

-Wanalyzer-tainted-array-index

-Wanalyzer-exposure-through-output-file

GCC 11: 5 new warnings

● -Wanalyzer-mismatching-deallocation
– __attribute__((malloc, “what_frees_this”))

● -Wanalyzer-shift-count-negative
● -Wanalyzer-shift-count-overflow
● -Wanalyzer-write-to-const
● -Wanalyzer-write-to-string-literal

GCC 11: plugin support

● Plugins can extend the analyzer, allowing domain-
specific path-sensitive warnings.

● Example (from testsuite): checking for misuses of
CPython's global interpreter lock

GCC 11: plugin support (2)
gil-1.c: In function ‘test_2’:
gil-1.c:16:3: warning: use of PyObject ‘*obj’ without the GIL
 16 | Py_INCREF (obj);
 | ^~~~~~~~~
 ‘test_2’: events 1-2
 |
 | 14 | Py_BEGIN_ALLOW_THREADS
 | | ^~~~~~~~~~~~~~~~~~~~~~
 | | |
 | | (1) releasing the GIL here
 | 15 |
 | 16 | Py_INCREF (obj);
 | | ~~~~~~~~~
 | | |
 | | (2) PyObject ‘*obj’ used here without the GIL
 |

Buffer overflow detection?

● Experimented with implementing this
● -fanalyzer in trunk (for GCC 12) now:

– captures the sizes of dynamic allocations as symbolic
values (e.g “extents (*ptr) == (N * 8) + 64”)

– has a consistent place for adding diagnostics about
memory accesses (reads and writes)

– But...

Buffer overflow detection (2)

● I tried verifying that all memory accesses are within
bounds

● Is this access:
– Known to be fully within bounds?
– Known to be (at least partially) outside bounds?
– Unknown if fully within bounds?

Buffer overflow detection (3)

● “What are the symbolic conditions that hold for this
memory access to be valid?”
– Known valid
– Known invalid: report

● should I implement this?

– Unknown: what to do?
● “warning: possible out-of-bounds write to ‘arr[i]’ when ‘i >= n’ or ‘i < 0’”
● ...but maybe that can’t happen

Buffer overflow detection (4)

● Too many false positives: a wall of noise
● Insight: can an attacker influence this?

– Revisit of taint detection
● What are the “trust boundaries” in the code?
● What is the “attack surface” of the code?

	Title
	Overview
	Caveat
	What is -fanalyzer?
	Looking at historical kernel CVEs
	Infoleak detection
	Infoleak detection (2)
	Infoleak detection (3)
	Infoleak detection (4)
	Taint detection (1)
	Taint detection (2)
	Taint detection (3)
	Marking trust boundaries
	antipatterns.ko
	-fanalyzer on the kernel (2)
	Current Status (2)
	Topics we could talk about
	More Info
	Bonus slides
	Internal implementation
	Internal implementation (2)
	Internal implementation (3)
	New warnings in GCC 10
	New warnings in GCC 11
	GCC 11: plugins
	GCC 11: plugins - example
	Buffer overflow detection?
	Buffer overflow detection (2)
	Buffer overflow detection (3)
	Buffer overflow detection (4)

