
 Runtime redundancy and monitoring for critical
 subsystem/components

Presenters

Gabriele Paoloni
Senior Principal Software

Engineer
Functional Safety

In-vehicle OS

Daniel Bristot
Principal Software Engineer
real-time/trace/verification

and other things in kernel

Agenda:
● ASIL Decomposition: what it is, when and how to use it
● Is it applicable to Linux drivers/subsytem?
● When it is worth applying it?
● How?...Runtime Verification Monitors
● What is the performance penalty?

ASIL Decomposition: what it is, when and how to use it

The ASIL decomposition is the methodology of decomposing a safety requirement into
redundant safety requirements and allocating such safety requirements to sufficiently
independent design elements.

In the process of decomposition the ASIL allocated the each independent element can be
lower than the ASIL allocated to the top level one as long as the sum of the ASIL allocated to
the decomposed requirements equals the ASIL of the parent requirement.

before decomposition

After decomposition

Req. Y
ASIL B

Req. Y
QM(B)

Req. Y
ASIL B

E.g.

ASIL Decomposition: what it is, when and how to use it.
>> Example

Top level requirement: Following car failure the display system shall project the respective
correct telltale within 100msec (ASILB)

Telltale
Request

MCU Display

ASILB(B)

QM(B)

ASIL Decomposition: what it is, when and how to use it.
>> Example

Decomposed requirements:
● Element A: following a car failure the display system shall project the respective correct telltale within 100msec (QM(B))

● Element B: Following a car failure the dashboard display should be monitored to check the requested telltale to be
projected within 100msec (ASILB(B))

Telltale
Request

MCU Display

read back
path

safety monitor

The two elements must
be independent

It is worth decomposing if
the safety monitor is
much simpler than the
QM element

ASIL Decomposition in the Linux Kernel

External (to Linux) independent monitor

ASILB HW

ASILB Hypervisor

QM(B) Linux Kernel ASILB Safe OS

QM(B) App ASILB(B) App
This is a common way of using Linux
systems in Functional Safety.

In this example we need an hypervisor, 2
operating systems and respective
independent applications.

So the BOM is significant

ASIL Decomposition in the Linux Kernel

What if we decompose inside the Kernel ?

ASILB HW

 Linux

ASILB(B) App ● Each subsystem allocated with a safety
requirement is monitored by a safety
monitor running inside the Kernel. So…

○ how to design the monitors?
○ how to make sure the monitors are

independent WRT the monitored
subsystems/drivers?

○ how monitors react to possible
interference coming from any QM
subsystem/driver?

VFS (QM(B)) VFS Monitor (ASILB(B))

Watchdog (QM(B)) WTD Monitor (ASILB(B))

Exception
Handler

(ASILB(B))
Other Subsystems - QM

Discussion Points

○ How to make sure the monitors are independent WRT the monitored
subsystems/drivers?

○ How monitors react to possible interference coming from any QM subsystem/driver?
■ Temporal Interference: monitors can regularly pet an external wtd
■ Communication interference: monitors by design only communicate with the

monitored subsystems (QM(x)) and with the exception handler (ASIL(x))
■ Spatial interference: The table of the states to be monitored can be read-only

(hence we leverage the HW MMU to raise exception in case of access)

