Linux Plumbers Conference 2021

Contribution ID: 228 Type: not specified

Linux kernel support for kernel thread starvation
avoidance

Tuesday, September 21, 2021 8:25 AM (35 minutes)

ABSTRACT

Running CPU-intensive high-priority real-time applications on a
real-time Linux kernel (based on the PREEMPT_RT patchset) can lead to
situations where the kernel’s own housekeeping tasks such as per-cpu
kernel threads get starved out, resulting in system instability
(hangs/unresponsive system). The Real-Time Throttling feature in the
Linux kernel is ineffective in addressing this problem as it does not
protect low-priority real-time kernel threads (such as ktimersoftd).

The stalld userspace daemon was introduced to solve this problem, and
is quite effective in principle; but it has a number of limitations

that makes it hard to use in practice, especially in production
deployments. We propose implementing stalld-like starvation avoidance
for kernel threads directly in the Linux kernel, to address all the
practical limitations of stalld. This design scales well with the

number of CPUs, has minimal monitoring overhead (CPU usage), and
compartmentalizes the fault-domain such that a misbehaved or
misconfigured real-time application does not bring down the entire
system.

INTRODUCTION

The Telco industry is undergoing a major revamp of its infrastructure

at the edge (cell towers) as well as the core datacenter, in order to

meet the demands of 5G networking. As part of this effort, the
underlying infrastructure called the Radio Access Network (RAN), which
was traditionally implemented in hardware (FPGAs) for low-latency
predictable real-time response, is being replaced with

software-defined RAN applications running on real-time Linux kernel
(PREEMPT_RT). These soft real-time applications involve running
CPU-intensive high-priority real-time tasks, to meet the stringent
latency requirements as defined by the 5G/3GPP specification.

There are a number of challenges that the Linux real-time stack needs
to address to support this new class of workloads. This proposal
focuses on system stability issues when running CPU-intensive
high-priority real-time applications on the PREEMPT_RT Linux kernel
and highlights the open issues and proposes a novel design to address
the limitations of existing solutions by implementing kernel-thread
starvation avoidance in the Linux kernel.

PROBLEM STATEMENT

In the Telco/5G Radio Access Network (RAN) usecase, deploying the
application involves running high-priority CPU hogs such as “L1 app”
(based on Intel’s FlexRAN and DPDK Poll-Mode-Driver). These
latency-sensitive tasks are bound to isolated CPUs and they run

infinite polling loops (in userspace) with high real-time priority
(typically SCHED_FIFO/90+). In this scenario, even if the L1 app RT
tasks don’t invoke kernel services by themselves, generic (non-RT)
workloads running on non-isolated CPUs (such as Kubernetes control
plane tasks) can cause per-CPU kernel threads to wake up on every CPU.



However, such kernel threads on isolated CPUs running the L1 app RT
tasks will get starved out, since the L1 app never yields the CPU.

One of the consequences of starving out essential kernel threads is
system-wide hangs. As an example, if a container gets destroyed (from
non-isolated CPUs), the corresponding network namespace teardown code
in the Linux kernel queues callbacks on per-CPU kworkers, and invokes
flush_work(), thus expecting the per-CPU kworker on every CPU to
participate in the teardown mechanism. As a result, the container
destroy will get hung indefinitely due to kthread starvation on CPUs
running the L1 app RT tasks. Furthermore, since this code path holds
the rtnl_lock, any other task that touches kernel networking will end
up getting stuck in uninterruptible sleep ("D’ state) too (eg: sshd,
ifconfig, systemd-networkd etc.), thus cascading to a system-wide

hang.

This pattern of kernel subsystems invoking per-CPU kernel threads for
synchronization is quite pervasive throughout the Linux kernel, and
the resulting kthread starvation issues go well beyond the specific
networking scenario highlighted above. Furthermore, even essential
real-time configuration tools and debugging utilities such as tuned

and ftrace/trace-cmd themselves rely on kernel interfaces that can
induce such starvation issues.

EXISTING SOLUTIONS AND LIMITATIONS

The community tried to address the problem of system instability
caused by running CPU-intensive high priority real-time applications
in LPC Real-Time microconference 2020 by introducing stalld. The
stalld userspace daemon monitors the system for starving tasks (both
userspace and kernel threads), and revives them by temporarily
boosting them using the SCHED_DEADLINE policy. It achieves this
revival and system stability by operating within tolerable bounds of
OS-jitter as configured by the user.

We have been using stalld along with RAN applications and it has been
quite effective in maintaining system stability. However, we have also
come across a number of limitations in stalld, owing to its design as
well as the choice to implement starvation monitoring and boosting in
userspace. We would like to bring out stalld’s pain-points and then
discuss a prototype that we have developed to address these concerns,
by implementing stalld-like kernel-thread starvation avoidance
directly in the Linux kernel.

Limitations of stalld in resolving kthread starvation:
1. Stalld does not scale with the number of CPUs

Stalld spawns a pthread for every CPU to monitor and boost starved
tasks on the respective CPU. However, in RAN usecases, due to the

use of CPU isolation, all of stalld’s threads are forced (bound) to

run only on the housekeeping CPUs, which are typically a small

subset of the available CPUs in the system. For example, on a 20 CPU
server with CPUs 2-19 isolated to run RT tasks, potentially 20

stalld threads compete for CPU time on housekeeping CPUs 0-1, trying
to monitor and boost starved tasks on all the 20 CPUs.

2. Stalld can get starved itself

Since stalld runs as a normal priority task, higher priority tasks

(or even a high volume of similar priority tasks) running on the
housekeeping CPUs can starve out stalld itself. Attempting to solve
this problem by turning stalld into an RT application is risky, as

it can make the situation worse - since all of stalld’s per-CPU
monitoring threads put together can potentially consume all the
available CPU time on the housekeeping CPUs (depending on how



aggressive the stalld configuration is), real-time stalld can end up
causing starvation itself!

3. Stalld’s logging is unreliable

On systemd-based Linux installations, stalld logs its output related

to starvation conditions and boosting events to journalctl logs via
systemd-journald. However, in most situations involving system-wide
hangs, systemd-journald gets stuck in uninterruptible state too,
leaving no trace of stalld’s execution flow and boosting decisions.

4. Trade-off between time-to-respond vs CPU consumption

One of the other concerns with stalld’s design is the use of per-CPU
threads for starvation monitoring and boosting, which can be CPU
intensive. To address this problem, stalld supports a

single-threaded mode of operation to monitor the entire system, but
trades-off the time-to-respond to starvation conditions in exchange
for lesser CPU consumption. However, this is a tricky trade-off for
the system administrator in practice, since typical starvation

issues arise from per-CPU kthreads woken on every CPU and demand
quick boosting/revival on every CPU for system stability.

Considering these limitations of stalld for practical deployments, we
have developed a prototype design to address these concerns by
implementing stalld-like kernel-thread starvation avoidance directly
in the Linux kernel.

DESIGN OF PROPOSED SOLUTION (IN-KERNEL KTHREAD STARVATION AVOIDANCE)

Our design to address the limitations of stalld builds on the
following key insights:

1. Compartmentalize the fault-domains of the RT application & the OS

System-wide hangs (as described above) are almost always caused by
starving kernel threads, which may be the result of a misconfigured
real-time application. However, ensuring that kernel threads never
starve (using an in-built starvation-avoidance algorithm in the

kernel) will keep the OS stable, while limiting the hangs or

starvation issues to the misbehaving application itself. A
misconfigured RT application can no longer bring down the entire OS.

2. Starvation avoidance via (per-CPU) scheduler-hooks scales well

In a typical real-time RAN application deployment, CPU isolation is
used to move all movable tasks to housekeeping CPUs, so as to run
the real-time application on the isolated CPUs. In such a
configuration, the only remaining kernel threads on the isolated
CPUs are non-migratable per-CPU kthreads such as ktimersoftd,
per-CPU kworkers etc., and those are the ones that are likely to get
starved out. Therefore, the problem of identifying starved
kernel-threads and reviving them via priority boosting is naturally
CPU-local, and it can be implemented without the need for
system-wide monitoring or cross-CPU coordination.

The Linux kernel scheduler uses a per-CPU design for scalability.
Hence, implementing per-CPU kernel thread starvation avoidance by
directly hooking onto the scheduler should automatically scale well.

3. Kernel-based design lends itself to an elegant implementation

Implementing starvation monitoring and revival for kernel-threads in
the Linux kernel itself offers a number of surprising benefits,
including the ability to elegantly side-step entire problem classes
altogther, as compared to a userspace solution, as noted below.

3A. Efficiency



The in-kernel implementation allows hooking the starvation
avoidance algorithm to specific events of interest within the
scheduler (such as task wakeups) which helps minimize unnecessary
periodic monitoring activity, thus saving CPU time.

3B. No risk of starving the starvation avoidance mechanism

In NOHZ_FULL mode, a single task can effectively monopolize the
CPU without ever entering the kernel; but luckily this also means that
there is no chance of starvation since there is only one task

eligible to run on that CPU. Waking up any other task targeted for
that CPU will invariably invoke the scheduler, which gives the
opportunity to run starvation avoidance as needed.

This design also side-steps problems that arise with userspace
solutions such as deciding the scheduling policy and priority at
which stalld runs so as to not get starved itself.

IMPLEMENTATION OUTLINE

We have developed a prototype that implements the design envisioned
above by using scheduler hooks in the Linux kernel as well as hrtimer
callbacks. A brief outline is presented below.

When a task gets enqueued into a CPU’s runqueue, the “stall monitor”
code arms a starvation-detection hrtimer (if not already armed) to

fire after a (user-configurable) starvation-threshold, iff the task

that was enqueued was a kernel thread.

Once the starvation-detection timer fires, the stall monitor code

checks if the set of runnable kernel threads on that CPU have been
starving for the threshold duration. If it detects starvation, it

arranges to boost the kernel threads (one-by-one) using the
SCHED_DEADLINE policy in the irq_exit() path of the hrtimer interrupt,
and arms a deboost hrtimer to fire after the (user-configurable) boost
duration.

The deboost timer’s callback restores the scheduling policy and
priority of the boosted kernel thread to its original settings.

We are still working on revising this basic design and implementation,
and we are looking forward to share more details at the conference and
seek the Linux real-time community’s invaluable feedback for further
improvements or better alternatives.

CONCLUSION

The Telco Radio Access Network (RAN) for 5G is an exciting avenue that
brings a new class of real-time workloads to Linux. While the Linux
real-time stack based on the PREEMPT_RT patchset has been used with
great success for decades with tightly controlled real-time

applications and system configuration, the Telco/RAN usecase
challenges the status quo by demanding lower real-time latency than
ever before, while co-existing with non-real-time workloads as generic
(i.e., not tightly controlled) as Kubernetes.

One of the major pain-points faced by the industry in running these
workloads on Linux is instability of the underlying OS itself, often
times triggered by the very tools that are used for Linux real-time
system configuration, tracing and debugging! In this proposal, we
discussed the most promising current solution in this problem space,
namely stalld, and highlighted its limitations as observed in

practical deployment scenarios. We proposed an alternative design that
addresses these limitations by implementing stalld-like kernel thread
starvation avoidance in the Linux kernel itself.



We are looking forward to the Linux community’s insightful feedback on
our design, as well as invaluable suggestions more broadly on solving

OS stability issues for RAN-like usecases that involve running
CPU-intensive high priority real-time tasks.

I agree to abide by the anti-harassment policy

Tagree

Primary authors: TURLAPATI, Sharan; BHAT, Srivatsa (VMware)
Presenters: TURLAPATI, Sharan; BHAT, Srivatsa (VMware)

Session Classification: Real-time MC

Track Classification: Real-time MC



