Linux Kernel Support for
Kernel Thread Starvation
Avolidance

Real-Time MC, Linux Plumbers Conference 2021

Sharan Turlapati (sturlapati@vmware.com)
Srivatsa Bhat (srivatsa@csail.mit.edu)

VMware Photon OS Team
21 Sep 2021

mailto:sturlapati@vmware.com
mailto:srivatsa@csail.mit.edu

Agenda Introduction
Problem Statement
Existing Solutions & Limitations
Design and Implementation of Stall Monitor

Challenges and Feedback

vmware

Overview of Telco/RAN : Radio Access Network for 5G

() Network Packets

4_______

Radio Tower Server running Linux PREEMPT_RT

Data Center

vmware

Overview of Telco/RAN : Radio Access Network for 5G

() ~70°°°77

Network Packets

4_______

Radio Tower Server running Linux PREEMPT_RT

Data Center

L LIA uI
€ L L

| Data transfer latency | RT Scheduling + Processing Latency |
[250 us (fiber-link) + 1.5 ms (radio-relative)] (~1ms)

vmware 4

Overview of Telco/RAN : Radio Access Network for 5G

() ~70°°°77

Network Packets

4_______

Radio Tower Server running Linux PREEMPT_RT

Data Center

! 1 |
| Data transfer latency | RT Scheduling + Processing Latency |
[250 us (fiber-link) + 1.5 ms (radio-relative)] (~1ms)
Fixed total latency budget for packet Tx + processing + ack (< 3ms)
vmware: Cyclictest latency < 10us
5

Problem Statement

Task Priority

Housekeeping Cores ' ‘ Nohz_full Isolated Cores '

vmware

Problem Statement

L1 app

> FIFO/90

S

a

4

©

|_

Housekeeping Cores Nohz_full Isolated Cores

vmware

Problem Statement

L1 app
FIFO/90

Task Priority

Seyrs\,/tiiems k8s ctrl plane
D —— OTHER/O

Housekeeping Cores ' ‘ Nohz_full Isolated Cores '

vmware

Problem Statement

L1 app
FIFO/90

2
| .
o
2 , !
o : kthread ,
X , FIFO/1 :
@6 el e
= System |

seyrvices k8s ctrl plane

(sshd &) OTHER/O

Housekeeping Cores Nohz_full Isolated Cores

vmware

Problem Statement

L1 app
FIFO/90

2
| .
o
2 , !
o : kthread ,
X , FIFO/1 :
©
= System T

seyrvices k8s ctrl plane

(sshd &) OTHER/O

Housekeeping Cores Nohz_full Isolated Cores

Problem: Starved kthreads lead to cascading lockups (hang)

vmware

Problem Statement

L1 app
FIFO/90

2
| .
o
2 , !
o : kthread ,
X , FIFO/1 :
©
= System T

seyrvices k8s ctrl plane

(sshd &) OTHER/O

Housekeeping Cores Nohz_full Isolated Cores

Problem: Starved kthreads lead to cascading lockups (hang)

Goal: OS must remain stable, limiting the fault-domain to the RT app

vmware

Problem Statement Example: Container destroy causes hang

vmware

Problem Statement Example: Container destroy causes hang

Reproducer:
1. Run high prio CPU hog on an isolated CPU
2. Create & destroy a docker container on a housekeeping CPU

vmware

13

Problem Statement Example: Container destroy causes hang

37 root 20 0 0.6m 0.60m 0.0 0.0 0:00.00 3 S [cpuhp/3]
38 root nL: 0 0.6m 0.6m 0.0 0.0 0:00.09 3 S [migration/3]
39 root re: @ 0.0m 0.6m 0.0 0.0 0:00.00 3 S [posixcputmr/3]
40 root -2 0 0.6m ©0.6m 0.0 0.0 0:00.00 3 S [rcuc/3]
41 root -2 0 0.6m 0.0m 0.0 0.0 0:00.00 3 S [ktimersoftd/3]
42 root 20 0 0.6m 0.0m 0.0 0.0 0:00.00 3 S [ksoftirqd/3]
43 root 20 0O 0.6m 0.0m 0.0 0.0 0:00.00 3 I [kworker/3:0-mm_percpu_wq]
44 root 0 -20 0.6m 0.6m 0.0 0.0 0:00.00 3 I [kworker/3:0H-events_highpri]
270 root 20 0 0.0m 0.0m 0.0 0.0 0:00.00 3 I [kworker/3:1-mm percpu wgq
-20 0. 0. 0.0 0.0 0: 3R
0 2% 0. 959 0.0 11E 3 R

vmware

Problem Statement Example: Container destroy causes hang

[cpuhp/3]

[migration/3]

[posixcputmr/3]

[rcuc/3]

[ktimersoftd/3]

[ksoftirqd/3]
[kworker/3:0-mm_percpu_wq]
[kworker/3:0H-events_highpri]
kworker/3:1-mm percpu Wwg
! [kworker/3:1H-events highpri]
! ./loop-rt

] '
O O [elNcloNoooNool ol
N O [elcololololololfolol
O O [clNcloloooNoNoNol
O O [elclooololololol
O O [eloclooolollololol
O O [eNcolocoNoooRo ol
O O [clNcNoNoNoNoNoRNoNo

|wwwwwwwwwww

CPU 3 is nohz_full isolated

vmware

Problem Statement Example: Container destroy causes hang

37 root 20 0 0.6m 0.6m 0.0 0.0 0:00.00 3 S [cpuhp/3]

38 root nL: 0 0.0m 0.6m 0.0 0.0 0:00.09 3 S [migration/3]

39 root BE 0.0m 0.6m 0.0 0.0 0:00.00 3 S [posixcputmr/3]

40 root -2 0 0.6m 0.6m 0.0 0.0 0:00.00 3 S [rcuc/3]

41 root -2 0 0.6m 0.6m 0.0 0.0 0:00.00 3 S [ktimersoftd/3]

42 root 20 0 0.6m ©0.6m 0.0 0.0 0:00.00 3 S [ksoftirqd/3]

43 root 20 0 0.6m 0.6m 0.0 0.0 0:00.00 3 I [kworker/3:0-mm_percpu_wq]

44 root 0 -20 0.6m 0.6m 0.0 0.0 0:00.00 3 I [kworker/3:0H-events highpri]

root 0 0.0m 06.0m 0.0 0.0 0:00.00 3 Kuorke 21_mm opercoll Wg

0 0. 0. 010 6160 3 R [kworker/3:1H-events_highpri]
) 25 0. 00 0SB 3 R ./loop-rt

loop-rt has high RT prio Two runnable tasks on CPU 3:
(SCHED _FIFO/55) loop-rt and kworker/3
vmware

Problem Statement Example: Container destroy causes hang

37 root 20 0 0.6m 0.6m 0.0 0.0 0:00.00 3 S [cpuhp/3]
38 root nL: 0 0.6m 0.6m 0.0 0.0 0:00.09 3 S [migration/3]
39 root re: @ 0.0m 0.6m 0.0 0.0 0:00.00 3 S [posixcputmr/3]
40 root -2 0 0.6m 0.6m 0.0 0.0 0:00.00 3 S [rcuc/3]
41 root -2 0 0.6m 0.0m 0.0 0.0 0:00.00 3 S [ktimersoftd/3]
42 root 20 0 0.6m 0.0m 0.0 0.0 0:00.00 3 S [ksoftirqd/3]
43 root 20 0O 0.6m 0.0m 0.0 0.0 0:00.00 3 I [kworker/3:0-mm_percpu_wq]
44 root 0 -20 0.6m 0.6m 0.0 0.0 0:00.00 3 I [kworker/3:0H-events highpri]
root 20 0 0.0m 0.0m 0.0 0.0 02 I
-20 0. 0. Lo AT aN (0 R [kworker/3:1H-events highpri]
0 2% 0. 959 0.0 11E R

loop-rt hogs the CPU
kworker/3 is starved

vmware

Problem Statement Example: Container destroy causes hang

37
38
39
40
41
42
43
44

root
root
root
root
root
root
root
root
root

20
rt
rt
-2
-2
20
20

0 -

20

© O [eNclNoNoNoNoNoNo Nl

N O [elcololololololfolol

.Om
.Om
.Om
.Om
.Om
.0m
.Om
.Om
.Om

o O [eNcolNoNoNoNoNoNo Nl

.Om
.Om
.0m
.Om
.Om
.Om
.Om
.Om
.Om

O O [elclooololololol
O O [eloclooolollololol

O O [eNcolocoNoooRo ol
O O [clNcNoNoNoNoNoRNoNo

vmware

> © ©O O 0O 000 C

:00.
:00.
:00.
:00.
:00.
:00.
:00.
:00.

00
09
00
00
00
00
00
00

W wwwwwww

S
S
S
5
S

S
I
I
d
R
R

[cpuhp/3]

[migration/3]

[posixcputmr/3]

[rcuc/3]

[ktimersoftd/3]

[ksoftirqd/3]
[kworker/3:0-mm_percpu_wq]
[kworker/3:0H-events_highpri]

[kworker/3:1H-events_highpri]

Stalld DEBUG: Dumping Stack for dockerd(PID = 1021

[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]

__flush_work+0x13e/0x1e0
flush_work+0x10/0x20

rollback registered many+0x168/0x540
unregister_netdevice many.part.124+0x12/0x90
unregister_netdevice_many+0x16/0x20
rtnl_delete_link+0x3f/0x50
rtnl_dellink+0x121/0x2b0
rtnetlink_rcv_msg+0x12a3/0x310
netlink_rcv_skb+0x54/0x130

rtnetlink _rcv+0x15/0x20
netlink_unicast+0x17b/0x220
netlink_sendmsg+0x2b5/0x3b0

sock sendmsg+0x3e/0x50
__sys_sendto+0x13f/0x180
__X64_sys_sendto+0x28/0x30

do_syscall 64+0x60/0x1bo

entry SYSCALL_64_after_hwframe+0x44/0xa9

Problem Statement Example: Container destroy causes hang

37
38
39
40
41
42
43
44

root
root
root
root
root
root
root
root
root

20
rt
rt
-2
-2
20
20

0 -

20

© O [eNclNoNoNoNoNoNo Nl

N O [elcololololololfolol

.Om
.Om
.Om
.Om
.Om
.0m
.Om
.Om
.Om

o O [eNcolNoNoNoNoNoNo Nl

.Om
.Om
.0m
.Om
.Om
.Om
.Om
.Om
.Om

O O [elclooololololol
O O [eloclooolollololol

O O [eNcolocoNoooRo ol
O O [clNcNoNoNoNoNoRNoNo

vmware

> © ©O O 0O 000 C

:00.
:00.
:00.
:00.
:00.
:00.
:00.
:00.

00
09
00
00
00
00
00
00

W wwwwwww

S
S
S
5
S

S
I
I
d
R
R

[cpuhp/3]

[migration/3]

[posixcputmr/3]

[rcuc/3]

[ktimersoftd/3]

[ksoftirqd/3]
[kworker/3:0-mm_percpu_wq]
[kworker/3:0H-events_highpri]

[kworker/3:1H-events_highpri]

Stalld DEBUG: Dumping Stack for dockerd(PID = 1021

[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]
[<0>]

__flush_work+0x13e/0x1e0
flush_work+0x10/0x20

rollback registered many+0x168/0x540
unregister_netdevice many.part.124+0x12/0x90
unregister_netdevice_many+0x16/0x20
rtnl_delete_link+0x3f/0x50
rtnl_dellink+0x121/0x2b0
rtnetlink_rcv_msg+0x12a3/0x310
netlink_rcv_skb+0x54/0x130

rtnetlink _rcv+0x15/0x20
netlink_unicast+0x17b/0x220
netlink_sendmsg+0x2b5/0x3b0

sock sendmsg+0x3e/0x50
__sys_sendto+0x13f/0x180
__X64_sys_sendto+0x28/0x30

do_syscall 64+0x60/0x1bo

entry SYSCALL_64_after_hwframe+0x44/0xa9

static int rtnetlink rcv _msg(..)

{

rtnl lock();
->flush _all backlogs();

rtnl unlock();

Problem Statement Example: Container destroy causes hang

Stalld DEBUG: Dumping Stack for dockerd(PID = 1021
gr@% 23 g gg“ ggm gg gg ?gggggg{cmm%§]/ﬂ [<6>] _ flush work+0x13e/0x1e0
i A S : i i g <0>] flush work+0x10/0x20
39 root BE 0.6m 0.6m 0.0 0.0 0:00.00 3 S Eposu/(q])utmrﬁ] E<0>% rollbgck registéred many+0x168/0Xx540
40 root -2 0 0.6m ©O0.6m 0.0 0.0 0:00.00 3 S [rcuc/3 — —
41 root -2 0 0.em 0.6m 0.0 0.0 0:00.00 3 S [ktimersoftd/3] [<6>] unregister_netdevice_many.part.124+0x12/0x90
42 root 20 6 0.6m 0.6m 0.0 0.0 0:00.00 3 S [ksoftirqd/3] [<0>] unregister_netdevice_many+0x16/0x20
e e e e e
— i s < e iy B i : ; - [<0>] rtnl_dgllink+0x121/ex2b0
-20 0. 0. 0.6 6.0 6: R [kworker/3:1H-events_highpri] [<0>] rtnetlink_rcv_msg+0x12a/0x310
o 2. 0. 9.9 0.0 1: R [<0>] netlink_rcv_skb+0x54/0x130

[<0>] rtnetlink_rcv+0x15/0x20

Stalld DEBUG: Dumping Stack for systemd-network Fg:% ::St:t—‘;z";;z:;gggg;ggﬁg

. <
[<0>] rtneFlmk_rcv_msg+0xda/0x310 [=ctl =rrdmeotfuae [Bxs
[<0>] nethnI.<_rcv_skb+0x54/0x130 [<0>] _ sys sendto+®x13f/0x180
[<0>] rtnetlink rcv+0x15/0x20 [<0>] __x64_sys_sendto+0x28/0x30
[<0>] netlink unicast+0x17b/0x220 [<0>] do_syscall_64+0x60/0x1b0
[<0>] netlink sendmsg+0x2b5/0x3be [<0>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[<0>] SOCk_SendeQ+0X3e/0X50 static int rtnetlink rcv _msg(..)
[<6>] _ sys sendto+0x13f/0x180 {
[<0>] _ x64 sys sendto+0x28/0x30 rtnl_lock();
[<60>] do_syscall _64+0x60/0x1b0 ->flush_all_backlogs();
[<0>] entry SYSCALL 64 after_hwframe+0x44/0xa9 rtnl_unlock();

}
vimware

Problem Statement Example: Container destroy causes hang

Stalld DEBUG: Dumping Stack for dockerd(PID = 1021
37 root 20 0 0.6m 0.0m 0.0 0.0 0:00.00 3 S {cpuhp/3] : [<0>] _flush_work+0x13e/0x1e0
38 root rr 0 0.6m 0.0m 0.0 0.0 0:00.09 3 S [migration/3
39 root BE 0.0m 0.6m 0.0 0.0 0:00.00 3 S [posixcputmr/3] [<0=] flush_work+0>.<10/0x20
40 root -2 0 0.em 0.6m 0.0 0.0 0:00.00 3 S [rcuc/3] [<0>] rollb§ck_reglstergd_many+0x168/0x540
41 root -2 ® 0.6m 0.6m 0.0 0.0 0:00.00 3 S [ktimersoftd/3] [<6>] unregister_netdevice_many.part.124+0x12/0x90
42 root 20 0 0.6m ©0.6m 0.0 0.0 0:00.00 3 S [ksoftirqd/3] [<06>] unregister_netdevice_many+0x16/0x20
43 root 20 0 0.6m 0.6m 0.0 0.0 0:00.00 3 I [twor::er/3:0-mm_percpu_wq] [<0>] rtnl_delete 1ink+0x3f/0x50
44 root 0 -20 0.6m 0.6m 0.0 0.0 0:00.00 3 I [kworker/3:0H-events_highpri] = I
— i e o < e i : e [<0>] rtnl_dglltnk+0x121/0x2b0
-20 0. 0. 0.6 6.0 6: R [kworker/3:1H-events_highpri] [<0>] rtnetlink_rcv_msg+0x12a/0x310
02 0. 9.9 0.0 1: R [<06>] netlink_rcv_skb+0x54/0x130

[<0>] rtnetlink_rcv+0x15/0x20

Stalld DEBUG: Dumping Stack for systemd-network [<g:] ne'&@nt_uni;asugx;gg/gxgtz)g
[<0>] rtne:clink_rcv_msg+0xda/0x310 E:%% ggckIQeEZt?\:ths)?(;e)/(OxS({) 3
[<0>] netlink_rcv_skb+0x54/0x130 [<0>] _ sys_sendto+0x13f/0x180
[<0>] rtnetlink rcv+0x15/0x20 [<0>] __x64_sys_sendto+0x28/0x30
[<6>] netlink_unicast+0x17b/0x220 [<0>] do_syscall_64+0x60/0x1b0
[<0>] netlink_sendmsg+0x2b5/0x3bo [<0>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[<0>] SOCk_Sendmsg+0X3e/0X50 static int rtnetlink rcv_msg(..)

[<6>] __sys_sendto+0x13f/0x180 { -

[<0>] __x64_sys_sendto+0x28/0x30 rtnl_lock();

[<60>] do_syscall _64+0x60/0x1b0 ->flush_all_backlogs();

[<06>] entry SYSCALL 64 after_ hwframe+0x44/0xa9 } renl_unlock();

Problem pattern is pervasive in Linux. Ex: ext4, cgroups, ftrace, sysctl etc.

vmware o

Existing solutions & [imitations: stalld

vmware

Existing solutions & [imitations: stalld

Overview of stalld
> Monitors for starving tasks + boosts them using SCHED_DEADLINE
> Revives system by operating within tolerable OS-jitter (user-configurable)

vmware

23

Existing solutions & [imitations: stalld

Overview of stalld
> Monitors for starving tasks + boosts them using SCHED_DEADLINE
> Revives system by operating within tolerable OS-jitter (user-configurable)
> Critical to RAN deployments to maintain stability

vmware

24

Existing solutions & [imitations: stalld

Overview of stalld
> Monitors for starving tasks + boosts them using SCHED_DEADLINE
> Revives system by operating within tolerable OS-jitter (user-configurable)
> Critical to RAN deployments to maintain stability

Limitations of stalld

vmware

25

Existing solutions & [imitations: stalld

Overview of stalld
> Monitors for starving tasks + boosts them using SCHED_DEADLINE

> Revives system by operating within tolerable OS-jitter (user-configurable)
> Critical to RAN deployments to maintain stability

Limitations of stalld

Limitation Reasons

Scalability Stallds threads run on housekeeping CPUs

Stalld can get starved itself Competes for time on housekeeping CPUs

RT prio stalld is risky — can cause stalls itself!
Unreliable logging systemd-journald can get stuck

Verbose logging gets stalld itself stuck
Trade-off: Response-time vs CPU consumption | Per-CPU threads vs single-threaded mode

vmware

26

Design Goals for Stall Monitor
And why a kernel-based implementation can meet them

vmware

27

Design Goals for Stall Monitor
And why a kernel-based implementation can meet them

» System hangs are almost always due to starving
» Prevent kthread starvation kernel threads

» In-kernel starvation avoidance compartmentalizes
the fault domain

vmware

28

Design Goals for Stall Monitor

And why a kernel-based implementation can meet them

> Prevent kthread starvation

» Ensure scalability

vmware

>

A\

System hangs are almost always due to starving
kernel threads

In-kernel starvation avoidance compartmentalizes
the fault domain

Per-cpu kthreads most susceptible to starvation
Per-cpu based scheduler hooks scale well

29

Design Goals for Stall Monitor
And why a kernel-based implementation can meet them

» System hangs are almost always due to starving
» Prevent kthread starvation kernel threads
» In-kernel starvation avoidance compartmentalizes
the fault domain

A\

Per-cpu kthreads most susceptible to starvation

» Ensure scalability
» Per-cpu based scheduler hooks scale well

. .. » Avoid unnecessary periodic monitorin
» Monitor and boost efficiently >ary P J .
sched events like wakeup and dequeue equip the

scheduler to take decisions efficiently

vmware

30

Design Goals for Stall Monitor

And why a kernel-based implementation can meet them

> Prevent kthread starvation

» Ensure scalability

» Monitor and boost efficiently

» Guarantee responsiveness

vmware

>

A\

System hangs are almost always due to starving
kernel threads

In-kernel starvation avoidance compartmentalizes
the fault domain

Per-cpu kthreads most susceptible to starvation

Per-cpu based scheduler hooks scale well

Avoid unnecessary periodic monitoring
sched events like wakeup and dequeue equip the
scheduler to take decisions efficiently

We must be able to prevent starvation under any scenario
Scheduler invocations inevitably offer the opportunity to
monitor for starvation

31

Design Features of Stall Monitor

vmware

Design Features of Stall Monitor

» Each CPU keeps track of starving kernel threads meant to run only on that CPU

vmware

33

Design Features of Stall Monitor

» Each CPU keeps track of starving kernel threads meant to run only on that CPU

» One hrtimer set up (on demand) per cpu to either -

= Monitor for starving kernel threads (starvation_threshold_time)
OR
» Track the boosted priority duration (boost__duration_time)

vmware

34

Design Features of Stall Monitor

» Each CPU keeps track of starving kernel threads meant to run only on that CPU

» One hrtimer set up (on demand) per cpu to either -

= Monitor for starving kernel threads (starvation_threshold_time)
OR
» Track the boosted priority duration (boost__duration_time)

» Boost only one starving kthread on a CPU at any given time

vmware

35

Design Features of Stall Monitor

Each CPU keeps track of starving kernel threads meant to run only on that CPU

» One hrtimer set up (on demand) per cpu to either -
= Monitor for starving kernel threads (starvation_threshold_time)

OR
» Track the boosted priority duration (boost__duration_time)

» Boost only one starving kthread on a CPU at any given time
» Boost or deboost happens in hardirq context of the hrtimer

36

vmware

Design Features of Stall Monitor

Each CPU keeps track of starving kernel threads meant to run only on that CPU

One hrtimer set up (on demand) per cpu to either -
= Monitor for starving kernel threads (starvation_threshold_time)

OR
» Track the boosted priority duration (boost__duration_time)

Boost only one starving kthread on a CPU at any given time

Boost or deboost happens in hardirg context of the hrtimer

User defined OS jitter
= With user configurable starvation_threshold__time, boost__duration_time as well

as SCHED_DEADLINE parameters

vmware

37

Implementation of Stall Monitor

Enqueue Task

is_enqueue_kthread

[Add kthread to]
S t

tarvation monitor lis

No

starvation timer active?

Yes

Start starvation
timer

Finish

enqueue_task

vmware

Yes

hrtimer_forward(boost_duration)]

Hrtimer callback

No

irq_enter

is_kthread_starving

Yes

W

No

is_starvation_list_empty

N

[

o
hrtimer_forward return
(starve_threshold) HRTIMER_NORESTART

J

‘4
4{ Begin irg_exit -> turn off hardirq J‘

—

[Complete irq_exit

38

Challenges & Open Questions

» Priority boosting must happen in hardirg context
« Cannot create more kthreads. Or can we use CPU stopper threads?
- Better alternatives?

» Restrict the monitoring and boosting to isolcpus only?

» How much latency does it introduce?

vmware

39

Thank you!

vmware

Additional Data Points

CFS code already has functions to track wait times spent by task on the runqueue -
Handled by update_stats_wait_start() and update_stats_wait_end()
This needs to be added to RT (SCHED _FIFO and SCHED _RR)

___sched_setscheduler invoked by sched _setattr() has checks on pi being invoked from
interrupt context. This is suspectedly due to rt_mutex__adjust__prio_chain() that enables
interrupts using raw_spin_unlock _irg(&task->pi__lock) unconditionally

vmware ¢

