
Allocator Attribution for
DMA-BUFs in Android
Linux Plumbers Conference 2021
Android Microconference

Problems that we are trying to solve

● No way to limit the total amount of DMA-BUF memory allocated on
behalf of a process.
■ Origins of buffer leaks hard to identify.

Why not...

● Use the memcg cgroup controller?
○ Per-app memcgs have considerable overhead and enabling them

only for tracking DMA-BUF usage would be too high of a cost.
● 15% minor page fault path performance regression reported by

partners with per-app memcgs using page fault test
benchmarks.

● Details of a per-app memcg performance regression reported
upstream can be seen here.

https://www.spinics.net/lists/linux-mm/msg121665.html
https://www.spinics.net/lists/linux-mm/msg121665.html

Why not...

● Use the memcg cgroup controller?
○ memcg performs accounting in units of page. In the DMA-BUF

buffer sharing model, a process takes a reference to the entire
buffer(hence keeping it alive) even if it is only accessing parts of it.
Per-page memory tracking feels like an unnecessary overhead for
DMA-BUF memory accounting.

○ There is also no need to use cgroups to track which processes are
holding fd/map references to a DMA-BUF since this information is
already available from procfs.

Why not...

● A userspace service to keep track of buffer allocations and release?
○ Allocation done using DMA-BUF heap IOCTLs.
○ Buffer release happens when the last reference to the buffer

dropped.
○ No way for a userspace service to intercept either allocation or

release.
○ In case the process gets killed/restarted, we lose all accounting so

far.

Why not...

● A new cgroup controller?
■ Efforts to add a GPU cgroup controller already in progress

upstream!
■ Authored by Kenny Ho and Brian Welty!

https://lore.kernel.org/dri-devel/20210126214626.16260-1-brian.welty@intel.com/T/#m7a6b9bdc020f2a39f9b0507358af4cbd28746fa8

Evaluating the GPU cgroup controller
for Android
● API from latest RFC is closely tied to the DRM framework.

int drm_cgroup_try_charge(struct drmcg *drmcg, struct drm_device *dev,

 enum drmcg_res_type type, u64 usage);

void drm_cgroup_uncharge(struct drmcg *drmcg, struct drm_device *dev,

 enum drmcg_res_type type, u64 usage);

Proposed Solutions

● Modify the API to be generic
○ Ensuring that it works for DRM while also accommodating use by DMA-BUF heaps.
○ Allow usage by non-GPU/graphics DMA-BUFs(such as those used by a camera driver).

● Perhaps resembling the following:
 int buffer_cg_try_charge(struct buffer_cg *buffer_cg,

 struct buffer_cg_device *device, u64 usage);

 void buffer_cg_uncharge(struct buffer_cg *gpu_cg, struct buffer_cg_device *device,

 u64 usage);

 int buffer_cg_register_device(struct buffer_cg_device *buffer_cg_dev);

 void buffer_cg_unregister_device(struct buffer_cg_device *buffer_cg_dev);

Evaluating the GPU cgroup controller
for Android
● Buffer is charged to allocating process and no way to move the charge

once allocated.

● Majority of graphics allocations happen through Gralloc HAL process in
Android.

○ Gralloc HAL presents a unified API to client.
○ Integral to the system/vendor separation paradigm in Android.
○ On a client request, Gralloc HAL allocates a buffer and sends the

DMA-BUF fd to the client over IPC.
○ It does not retain any references to the buffer.

Proposed Solutions

● Find a way to charge a buffer to a cgroup other than own.

Option 1
○ Explicit charge migration
■ Use the cgroup interface to move charge of a buffer to a different

cgroup.
■ For example: writing the dmabuf fd to

/sys/kernel/fs/cg1/cgroup.gpu.dma_buf_to_charge
■ Here dmabuf fd is the fd to the buffer held by the writing process.
■ Not upstreamable as per initial discussions with cgroup maintainers.

Proposed Solutions

● Find a way to charge a buffer to a cgroup other than own.

Option 2
● Use a mechanism similar to fadvise with FADV_DONTNEED where

that allocator can declare that it will not use the buffer. The buffer will
then be charged to the process who accesses it.

 Issues
● Results are non-deterministic.

○ The process who receives the fd over IPC might not map/install
the fd and pass it over to another process.

○ The buffer’s size would not apply towards the limit of the process
who requested the allocation.

Proposed Solutions

● Find a way to charge a buffer to a cgroup other than own.

Option 3
● New DMA-BUF Heap allocation IOCTL that takes as argument fd to

cgroup of client process
○ Charging to the client happens in IOCTL handler.
○ Sepolicy sufficient to guarantee security?

We are open to collaboration!

● Please reach out to us at android-kernel-team@google.com.

 THANK YOU!

