Allocator Attribution for
DMA-BUFs in Android

Linux Plumbers Conference 2021
Android Microconference

android

Problems that we are trying to solve

» No way to limit the total amount of DMA-BUF memory allocated on
behalf of a process.

m Origins of buffer leaks hard to identify.

IMAGE STREAM PRODUCERS

' Media Player Camera Preview NDK OpenGL ES

Window WINDOW POSITIONING NATIVE FRAMEWORK Buffer
Metadata | Data
\ frameworks/native/libs/gui
WindowManager

Surface.cpp

; IMAGE STREAM CONSUMERS Nl)

Buffer
datad GLConsumer.c
OpenGL ES Apps 1 i

L’ SurfaceFlinger w | |GraphicBufferProducer

Hardware Composer Gralloc

android

Why not...

Use the memcg cgroup controller?

o Per-app memcgs have considerable overnead and enabling them
only for tracking DMA-BUF usage would be too high of a cost.

e 15% minor page fault path performance regression reported by
partners with per-app memcgs using page fault test
benchmarks.

e Detalls of a per-app memcg performance regression reported
upstream can be seen here.

android

https://www.spinics.net/lists/linux-mm/msg121665.html
https://www.spinics.net/lists/linux-mm/msg121665.html

Why not...

Use the memcg cgroup controller?

o memcg performs accounting in units of page. In the DMA-BUF
buffer sharing model, a process takes a reference to the entire
buffer(hence keeping it alive) even if it is only accessing parts of it.
Per-page memory tracking feels like an unnecessary overhead for
DMA-BUF memory accounting.

o There Is also no need to use cgroups to track which processes are
holding fd/map references to a DMA-BUF since this information is
already available from procfs.

android

Why not...

A userspace service to keep track of buffer allocations and release?

o Allocation done using DMA-BUF heap IOCTLSs.

o Buffer release happens when the last reference to the buffer
dropped.

o No way for a userspace service to intercept either allocation or
release.

o In case the process gets killed/restarted, we lose all accounting so
far.

android

Why not...

A new cgroup controller?

m Efforts to add a GPU cgroup controller already in progress

upstream!
m Authored by Kenny Ho and Brian Welty!

android

https://lore.kernel.org/dri-devel/20210126214626.16260-1-brian.welty@intel.com/T/#m7a6b9bdc020f2a39f9b0507358af4cbd28746fa8

Evaluating the GPU cgroup controller
for Android

e API| from latest RFC is closely tied to the DRM framework.

1nt drm cgroup try charge(struct drmcg *drmcg, struct drm device *dev,
enum drmcg res type type, uo4d usage);
volid drm cgroup uncharge (struct drmcg *drmcg, struct drm device *dev,

enum drmcg res type type, uo4d usage);

android

Proposed Solutions

e Modify the API to be generic
o Ensuring that it works for DRM while also accommodating use by DMA-BUF heaps.
o Allow usage by non-GPU/graphics DMA-BUFs(such as those used by a camera driver).

e Perhaps resembling the following:

1nt buffer cg try charge(struct buffer cg *buffer cg,
struct buffer cg device *device, u6t4d usage);

void buffer cg uncharge(struct buffer cg *gpu cg, struct buffer cg device *device,
uoc4d usage) ;

1nt buffer cg register device(struct buffer cg device *buffer cg dev);

void buffer cg unregister device (struct buffer cg device *buffer cg dev);

android

Evaluating the GPU cgroup controller
for Android

e Buffer is charged to allocating process and no way to move the charge
once allocated.

e Majority of graphics allocations happen through Gralloc HAL process in
Android.
o Gralloc HAL presents a unified API to client.
o Integral to the system/vendor separation paradigm in Android.
o On a client request, Gralloc HAL allocates a buffer and sends the
DMA-BUF fd to the client over IPC.

o It does not retain any references to the buffer.

android

Proposed Solutions

e Find a way to charge a buffer to a cgroup other than own.

o Explicit charge migration
m Use the cgroup interface to move charge of a buffer to a different
cgroup.
m For example: writing the dmabuf fd to
[sys/kernel/fs/cg1/cgroup.gpu.dma_buf to charge
m Here dmabuf fd is the fd to the buffer held by the writing process.
m Not upstreamable as per Initial discussions with cgroup maintainers.

android

Proposed Solutions

e Find a way to charge a buffer to a cgroup other than own.

e Use a mechanism similar to fadvise with FADV DONTNEED where
that allocator can declare that it will not use the buffer. The buffer will
then be charged to the process who accesses It.

e Results are non-deterministic.
o The process who receives the fd over IPC might not map/install
the fd and pass it over to another process.
o The buffer’'s size would not apply towards the limit of the process
who requested the allocation.

android

Proposed Solutions

e Find a way to charge a buffer to a cgroup other than own.

e New DMA-BUF Heap allocation IOCTL that takes as argument fd to
cgroup of client process
o Charging to the client happens in [OCTL handler.
o Sepolicy sufficient to guarantee security?

android

We are open to collaboration!

Please reach out to us at android-kernel-team@google.com.

android

THANK YOU!

android

