dm-snapshot in userspace

Akilesh Kailash <akailash@google.com>
David Anderson <dvander@google.com>

android

Behind the Scenes - Virtual A/B

o

Delta size depends on
the update size
(copy-on-write) and can
be computed in advance

Space for deltas is
dynamically allocated
during an update (use
free space in super and
files in /data)

system_a

Virtual A/B

system_a

boot (a + b)

[.super(a+b) |

vendor_a

product_a

boot (a + b)

vendor_a

super

Avendo

product_a

android

Usage of dm-snapshot (Android 11 (2020))

o dm-snapshot has a
copy-on-write encoding native
to the kernel

o No compression, no way to
efficiently represent
moves/copies or zeros

o Ifthe OTA package encodes
a "move" operation that totals
100MB of data, it will create
100MB of writes to
system_cow.

/system

I

dm-verity

I

dm-snapshot

T

dm-linear ’ dm-linear
(system_base) (system_cow)

super partition

android

Uncompressed Snapshots

o Feedback: Snapshots are too
large!

o Reason: Snapshots
effectively uncompress the
OTA, causing them to use as
much space as full A/B.

o Solution: Compress
shapshots!

android

Compressed
Snapshots

New Copy-on-Write Format (Android COW format)

o Encodes four block-level operations:

@)

(@)

ZERO: The destination block is zeroed.

COPY: The destination block is copied from
a pre-existing block.

REPLACE: The destination block is replaced with
new data, gz-compressed into the COW.

XOR: The destination block is an XOR from
a pre-existing block with the changed content stored
in COW.

android

dm-user - Kernel module, like FUSE
but for block devices.

snapuserd - Translates compressed
snapshots back to the kernel.

Kernel continues to make 1/O requests
as if it were using its native COW
format.

These requests are sent to userspace
via dm-user, then translated into
Android's COW format by snapuserd.

dm-snapshot is read-only.

Usage of dm-snapshot (Android 12 (2021))

/system

I

dm-verity

!

dm-snapshot

T~

dm-linear

(system_base) el
super partition snapuserd
dm-linear

(system_cow)

android

Space Reduction

(@)

Compressed Snapshots save a huge amount of space
compared to uncompressed Virtual A/B. Pixel samples:

Full OTA (1.8G) Incremental OTA (150MB)
VAB no compression 4173 MiB 3937 MiB
VAB compression 2328 MiB 492 MiB

Full OTAs are around 45% smaller.

Incremental OTAs are around 8X smaller, depending on how
many blocks were copied versus replaced.

Smaller COWs make it easier to reduce the size of super
and
give more space to users in /data.

android

Challenges

e Virtual AB Compression uses an Android-specific on-disk format to hold the diff
between the A and B devices

o COW format is too Android-specific for upstream
o Fairly complex and ripe for future optimization

e Complexity of daemon is high as it intercepts the COW reads and writes occurring in
the kernel, and implements them using the Android COW format. This translation
makes daemon complex.

e Snapshot merge times are longer due to constant switching between user space and
kernel.

e Boot time is impacted as every I/O to root partitions has to be served by the daemon.

e dm-snapshot is read-only. All writes to Android COW format are done in user space
when OTA is downloaded.

android

Move Snapshot and Merge to user space

o Daemon will now be responsible for
end-to-end merging.

o No more dependency with kernel
dm-snapshots cutting down context
switches between user-space and
kernel during merge.

o root partition will be mounted off
dm-user.

o Daemon will serve the I/0O requests
from dm-user

dm-linear

‘ Isystem
‘ dm-verity
‘ dm-user
I Snapuserd)
 (user-space daemon)
dm-‘lmear ‘
(system_cow) '

(system_base)

android

Performance and evaluation

e Prototype shows improvement in merge time performance

e Since partitions are mounted off dm-user, performance of dm-user is important as it can
impact boot time

o Performance of NBD (network block device) on boot time needs to be evaluated.

o During boot process, I/O is carefully paused and resumed as snapuserd daemon is
re-exec()’'d to enable SEPolicy. We use device mapper “suspend” and “resume”
functionality to achieve this transition.

android

