
dm-snapshot in userspace

Akilesh Kailash <akailash@google.com>
David Anderson <dvander@google.com>



Behind the Scenes - Virtual A/B

० Delta size depends on 
the update size 
(copy-on-write) and can 
be computed in advance

० Space for deltas is 
dynamically allocated 
during an update (use 
free space in super and 
files in /data)



Usage of dm-snapshot (Android 11 (2020))

○ dm-snapshot has a 
copy-on-write encoding native 
to the kernel

○ No compression, no way to 
efficiently represent 
moves/copies or zeros

○ If the OTA package encodes 
a "move" operation that totals 
100MB of data, it will create 
100MB of writes to 
system_cow.



Uncompressed Snapshots

○ Feedback: Snapshots are too 
large!

○ Reason: Snapshots 
effectively uncompress the 
OTA, causing them to use as 
much space as full A/B.

○ Solution: Compress 
snapshots!



Compressed 
Snapshots



New Copy-on-Write Format (Android COW format)

○ Encodes four block-level operations:

○ ZERO: The destination block is zeroed.

○ COPY: The destination block is copied from 
a pre-existing block.

○ REPLACE: The destination block is replaced with 
new data, gz-compressed into the COW.

○ XOR: The destination block is an XOR from 
a pre-existing block with the changed content stored 
in COW.



Usage of dm-snapshot (Android 12 (2021))

○ dm-user - Kernel module, like FUSE 
but for block devices.

○ snapuserd - Translates compressed 
snapshots back to the kernel.

○ Kernel continues to make I/O requests 
as if it were using its native COW 
format.

○ These requests are sent to userspace 
via dm-user, then translated into 
Android's COW format by snapuserd.

○ dm-snapshot is read-only.



Space Reduction

○ Compressed Snapshots save a huge amount of space 
compared to uncompressed Virtual A/B. Pixel samples:

Full OTA (1.8G) Incremental OTA (150MB)

VAB no compression 4173 MiB 3937 MiB

VAB compression 2328 MiB 492 MiB

○ Full OTAs are around 45% smaller.

○ Incremental OTAs are around 8X smaller, depending on how 
many blocks were copied versus replaced.

○ Smaller COWs make it easier to reduce the size of super 
and 
give more space to users in /data.



Challenges

● Virtual AB Compression uses an Android-specific on-disk format to hold the diff 
between the A and B devices

○ COW format is too Android-specific for upstream

○ Fairly complex and ripe for future optimization

● Complexity of daemon is high as it intercepts the COW reads and writes occurring in 
the kernel, and implements them using the Android COW format. This translation 
makes daemon complex.

● Snapshot merge times are longer due to constant switching between user space and 
kernel.

● Boot time is impacted as every I/O to root partitions has to be served by the daemon.

● dm-snapshot is read-only. All writes to Android COW format are done in user space 
when OTA is downloaded.



Move Snapshot and Merge to user space

○ Daemon will now be responsible for 
end-to-end merging. 

○ No more dependency with kernel 
dm-snapshots cutting down context 
switches between user-space and 
kernel during merge.

○ root partition will be mounted off 
dm-user.

○ Daemon will serve the I/O requests 
from dm-user



Performance and evaluation

● Prototype shows improvement in merge time performance

● Since partitions are mounted off dm-user, performance of dm-user is important as it can 
impact boot time

○ Performance of NBD (network block device) on boot time needs to be evaluated.

○ During boot process, I/O is carefully paused and resumed as snapuserd daemon is 
re-exec()’d to enable SEPolicy. We use device mapper “suspend” and “resume” 
functionality to achieve this transition. 


