
FS stacking with FUSE:
performance issues and mitigations
Alessio Balsini <balsini@google.com>
Paul Lawrence <paullawrence@google.com>

Linux Plumbers Conference, 2021

FUSE in Android
Extra permission checks on shared storage
access, e.g., only some apps can access
some folders

Data redaction, e.g., remove metadata from
pictures

Live transcoding

Emulates the external storage regardless
its location, e.g., (un)mounting external
storage media

FUSE daemon
FUSE daemon

FUSE daemon

FUSE driver
ext4

App

Kernel SpaceVFS

User Space

F2FS

FUSE mount /dev/FUSE

/sdcard/*

mount

/data/media/*

FUSE performance flaws analysis

● Additional FUSE daemon logic
○ That's part of the feature

● Extra VFS traversal
○ 2 file systems are accessed, extra checkings are

desirable
○ Double caching for identical FUSE/lower fs files

● Data passing
○ Mostly pointers. Splicing and read-ahead help
○ Writes and rand-read/-writes should be

improved
● Long pipeline

○ Communication delay, context switches,
user ←→ kernel switches

● Parallelism
○ Extra locks

...for almost every FUSE file system operation

FUSE passthrough
Coming with Android 12
On LKML: V8, V9, V10, V11, V12
https://lore.kernel.org/lkml/20210125153057.3623715-1-balsini@android.com/

https://lkml.org/lkml/2020/9/11/754
https://lkml.org/lkml/2020/9/24/666
https://lore.kernel.org/lkml/20201026125016.1905945-1-balsini@android.com/
https://lore.kernel.org/lkml/YAbRz83CV2TyU3wT@google.com/
https://lore.kernel.org/lkml/20210125153057.3623715-1-balsini@android.com/

FUSE passthrough: Read, Write, MMAP

At file open, the FUSE daemon:

● ioctl("/dev/FUSE",
 FUSE_PASSTHROUGH_OPEN,
 lower_fs_fd);

That fuse_file gets a pointer to the lower file
pointer

Upcoming read/write/mmap on that file:

● redirected to the lower file system
● use FUSE daemon credentials
● passthrough until close()

FUSE daemon
FUSE daemon

FUSE daemon

FUSE driver
ext4

App

Kernel SpaceVFS

User Space

F2FS

/dev/FUSE mount

/data/media/*

FUSE mount

/sdcard/*

FUSE
FUSE passthrough

Performance in a nutshell: FIO on RAM block device

fio-3.23 on RAM device, x86_64, Linux 5.13

● bs=4Ki
● size=20Gi
● ioengine=sync
● fsync_on_close=1
● randseed=0

This highlights FUSE bottlenecks

● If we increase the storage device speed,
FUSE performance doesn't change!

FUSE read performance is the result of good
read-ahead

 >
 T

he
 h

ig
he

r t
he

 b
et

te
r

FUSE BPF
Experimental, soon on LKML

FUSE BPF: stacking fs + passthrough + extFUSE ?

Implement a generic stacking file system

Allow requests to either be handled by FUSE or the backing file system

Allow pre and post filtering of backing file system request

Filtering can be either by the kernel, or through FUSE-style requests to userspace

Overcome FUSE passthrough limitations (per-file, read/write/mmap only)

Inspiration from

● extFUSE, presented by Ashish Bijlani at Plumbers in 2019
(https://linuxplumbersconf.org/event/4/contributions/415/)

● FUSE passthrough
● Stacking file systems, e.g., incremental fs

https://linuxplumbersconf.org/event/4/contributions/415/

FUSE BPF at a glance

Add to fuse_inode:

● struct inode *backing_inode;
● struct bpf_prog *bpf;

These may be set at mount time for root, at lookup time for all other inodes

If backing_inode exists, all requests will be conditionally sent to the backing inode, else we are in classic FUSE mode

If no bpf: simply forward as is (pure passthrough mode)

If bpf: format fuse_args with in_args and send to BPF, which may redirect request to classic FUSE or

1. Optionally request user-mode pre-filter with same modifiable in_args
2. (Potentially modified) request is sent to backing file system
3. Optionally pass in_args & out_args to BPF post-filter
4. Optionally pass in_args & out_args to user-mode post-filter

Early prototypes being tested within Android team

FUSE passthrough FUSE BPF

How can we do better for Linux?

Do we really want FUSE_PASSTHROUGH_CLOSE?

Can be done with a mapping container (e.g., IDR),
but is not as simple as fuse2 (extra spinlocks)

BPF is a good compromise between user space
and kernel space (good fit for FUSE)

Would the Linux community benefit from this?

Is such architecture upstreamable?

FS stacking with FUSE:
performance issues and mitigations
Alessio Balsini <balsini@google.com>
Paul Lawrence <paullawrence@google.com>

Linux Plumbers Conference, 2021

Thanks!
Questions?

