
Libo Chen 

libo.chen@oracle.com



Symptom

How to reproduce?

➢ Interrupt-heavy workloads: YCSB, iPerf, etc.

➢ Bind IRQs to a specific socket/NUMA node

➢ Network performance is very sensitive to having IRQs routed to the 

“wrong” socket because a PCI bus is usually connected to one socket. 

Some even reported up to 2x slower performance

Tasks are constantly getting pulled to the socket/NUMA node that IRQs are 

bound to while leaving other sockets nearly idle.

➢ Within each socket, loads are fairly balanced

➢ Spreading out tasks more evenly across sockets can improve performance 

numbers from YCSB benchmark under light load.

https://fasterdata.es.net/host-tuning/linux/100g-tuning/interrupt-binding/


Light Load



Heavy Load



Cause
CFS wakeups actively pull wakee tasks

➢ Frequent wakeups from network ISR

➢ Due to the network IRQ binding, waking CPUs are mostly the ones 

network IRQs are bound to.

➢ Work against periodic and idle load balancing

select_task_rq_fair() has a two-pass process determining whether to 

wake affine or not

➢ wake_wide() is the first pass, a heuristic that makes sense if waker

and wakee are related.

➢ In our cases, waker task is not the one wakes the wakee. It’s just 

happened to be on the CPU when the interrupt comes in.

➢ Wake_wide() returns 0 because waker and wakee have similar 

wakee_flips numbers.

➢ We notice wake_wide() is the more dominate factor than the second 

pass, wake_affine()



Fix?

Questions to be answered:

1. When should we pull for interrupts?

• Ultimately who has the warmer cache? The scheduler currently 

doesn’t have the necessary information to make a good decision

• Can we allow the userspace to have a preference? 

2. Currently wake_wide() doesn’t make sense for wakeups from ISRs. Can we 

have a better heuristic for interrupts?


