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Abstract

This thesis shows how to construct evidence of correctness for the Red-Black tree (RBT)
implementation of the Linux kernel through testing and formal verification. First, it
describes how to verify the results of kernel RBT operations by comparing them against
the results of a formally verified RBT variant. Second, it shows how modifying this
verified implementation and identifying new invariants makes it possible to prove the
correctness of the kernel RBT insert algorithm in Isabelle/HOL.
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1 Introduction

Linux is one of the most widely deployed operating system kernels in the world. Its
feature richness and availability as free software make it a popular choice for all kinds
of domains, from embedded systems to high-performance computing [15]. With the
recent advances in AI, today’s software systems have become more autonomous and begin
establishing themselves in safety-critical and human-centered environments. While Linux
is an attractive kernel for these systems, one desirable requirement it does not currently
meet is a high assurance of functional correctness. The Linux kernel documentation
explicitly states: “The developers’ goal is to fix all known regressions before the stable
release is made. In the real world, this kind of perfection is hard to achieve [. . . ]. So
most 5.x kernels go out with a handful of known regressions [. . . ]” [16]. The Linux
Foundation hosts numerous projects to accelerate the improvement and adoption of Linux
in these new domains. Notable projects are “Enabling Linux in Safety Critical Applications
(ELISA),” “Automotive Grade Linux (AGL),” and the “Civil Infrastructure Platform (CIP).”

To increase the confidence of a functionally correct Linux kernel, this thesis tests an
integral part of it, the Red-Black tree (RBT) data structure. Various schedulers, filesystems,
and the memory subsystem are (among others) users of Red-Black trees [11]. The
kernel already provides some tests to check the correctness of the RBT implementation.
However, these only test one specific sequence of RBT operations—insert n elements into
the tree and delete them again. This testing schema cannot rule out possible errors for
other sequences because the RBT invariants are ambiguous. For example, inserting and
deleting the same element in a tree can—depending on the implementation—result in a
structurally different tree than before executing these two operations; or, mathematically
speaking, the composition of these operations can be non-idempotent. Moreover, the
correctness check after every operation partly relies on the correctness of unverified
auxiliary Red-Black tree functions and macros.

I tested the insert and delete operation of the kernel RBT by comparing their results
against an RBT variant that was formally verified in the interactive theorem prover
Isabelle. For this, I developed a testing pipeline consisting of a loadable kernel module,
a verified Haskell Red-Black tree implementation, different input generation strategies,
and two RBT comparison strategies. This testing pipeline did not reveal any errors after
millions of executed and verified operations. Moreover, I confirmed that the testing
pipeline could find a bug if one existed in the kernel implementation.
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1 Introduction

In addition, I formalized the kernel RBT insert algorithm in Isabelle/HOL and proved it
correct by altering the existing HOL formalization and adding new lemmas.

These two approaches together form a higher assurance and confidence of a functionally
correct Linux Red-Black tree implementation.

1.1 Outline

The following chapter introduces the interactive theorem prover Isabelle, its code gen-
eration feature, Red-Black trees, Linux kernel modules, testing facilities in Linux, and
communication with the Linux kernel. Chapter 3 explains the building blocks of the
testing pipeline and how I verified the kernel insert operation in Isabelle/HOL. Chapter 4
executes the testing pipeline and evaluates the results. Chapter 5 presents related work.
Finally, chapter 6 discusses possible future work and the applicability of testing other
kernel parts with the approach presented in this thesis.
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2 Preliminaries

Throughout this thesis, I use the terms “Linux,” “kernel,” and the combination of both
interchangeably unless otherwise noted. This thesis is based on kernel version 5.12, the
most recent one as of writing.

2.1 Isabelle

Isabelle is an interactive proof assistant used to verify software and prove mathematical
theorems. Verification works by proving that a concrete implementation follows a
previously formalized specification. Users can choose between different formal languages
such as “Isabelle/HOL” for higher-order logic or “Isabelle/ZF” for first-order logic with
Zermelo–Fraenkel set theory [8]. Structured proofs resembling the style of classic paper
ones can be constructed with “Isabelle/Isar”. All formal development relevant for this
thesis is formalized in the logic Isabelle/HOL and uses Isabelle/Isar as the structured
proof language.

2.1.1 Code Generation

Code generation is a feature of Isabelle “to turn HOL specifications into corresponding
executable programs in the languages SML, OCaml, Haskell and Scala” [6]. I use it in
this thesis to turn the existing HOL Red-Black tree implementation into Haskell code.

2.2 Red-Black Trees

A Red-Black tree (RBT) is a binary version of an order 4 B-tree, where every link from
one node to the next is either “red” or “black.”1 A B-tree is a balanced search tree with
support for more than two children. The order of a B-tree describes the upper bound of
supported children. In an order 4 B-tree, every node must have between 2 to 4 children;
therefore, they are often called 2–4 (or 2–3–4) trees. Likewise, the number of keys in a

1In fact, a Red-Black tree can mimic a B-tree of any order [5]. The implementations of the different B-tree
orderings only differ in when they rotate subtrees and when they manipulate link colors. Nowadays the
term Red-Black tree typically describes the order 4 B-tree variant.
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2 Preliminaries

node has to be one less than the number of children. Moreover, every path from the root
to a leaf has to be equally long. Thus the height of a B-tree is logarithmic in its size [5].
Red-Black trees adopt similar balancing properties as explained below.

Figure 2.1: Embedding of 3-nodes and 4-nodes into an RBT [14]

Figure 2.1 shows how Red-Black trees mimic 3-nodes and 4-nodes. 3-nodes split into
two 2-nodes that connect with a red link. They can either lean to the left or the right
side. For 4-nodes, the middle key acts as a new parent with red links to the left and the
right key. Finally, a 2-node is just a node with black links to its children. Therefore, every
RBT uniquely maps to an order 4 B-tree, but not the other way round, as there are two
variants to encode a 3-node. Because of this ambiguity, classic RBT implementations
have to handle many cases. Left-Leaning Red-Black trees reduce this complexity by
forcing 3-nodes to lean to the left. However, neither the kernel nor the Isabelle/HOL
implementation uses this variant.

Based on this conversion of order 4 B-tree nodes to binary nodes with color, a Red-Black
tree has to satisfy the following properties and invariants (the color of a node is the link
color to its parent) [13, Red-Black Trees]:

1. The root is black.

2. Every leaf is considered black.

3. If a node is red, its children are black.

4. All paths from a node to a leaf have the same number of black nodes.

2.2.1 Height

Because an RBT is just an embedding of a B-tree, and all B-trees have a logarithmic height,
RBTs are likewise logarithmically bounded. When one path beginning from the root
consists of n black links, then the worst-case path length in this RBT consists of altering
black and red links up to length 2n. The colors have to alter because of invariant 3, and
there have to be exactly n black links on the path because of invariant 4. Therefore, the
worst-case path length is 2n, and the height of a Red-Black tree is likewise logarithmically
bounded in its size (≤ 2 log2 n) [5].

4



2 Preliminaries

2.2.2 Red-Black Trees in Isabelle

The Red-Black trees in Isabelle/HOL are encoded with an inductive data type and a
predicate rbt to capture the tree’s invariant:

datatype color = Red | Black

type synonym ’a rbt = "(’a*color) tree"

abbreviation R where "R l a r ≡ Node l (a, Red) r"

abbreviation B where "B l a r ≡ Node l (a, Black) r" fun color :: "’a rbt ⇒ color"

where
"color Leaf = Black" |

"color (Node ( , c) ) = c"

definition rbt :: "’a rbt ⇒ bool" where
"rbt t = (invc t ∧ invh t ∧ color t = Black)"

“invc” and “color t = Black” ensure that the tree is correctly colored (invariant 3
and 1). “invh” checks if all paths from a node to a leaf have the same number of black
nodes (invariant 4). Finally, the “color” function enforces all leaves to be black (invariant
2). The definition “rbt” does not force the tree to be a binary search tree (BST) [8,
HOL/Library/Tree.thy]:

fun bst wrt :: "(’a ⇒ ’a ⇒ bool) ⇒ ’a tree ⇒ bool" where
"bst wrt P 〈〉 ←→ True" |

"bst wrt P 〈l, a, r〉 ←→
(∀ x∈set tree l. P x a) ∧ (∀ x∈set tree r. P a x) ∧ bst wrt P l ∧ bst wrt P r"

abbreviation bst :: "(’a::linorder) tree ⇒ bool" where
"bst ≡ bst wrt (<)"

Including the BST invariant is not required because every defined RBT operation creates
or preserves it. This behavior was confirmed by verifying that the RBT implementation
conforms to the “inorder Set” specification [8, HOL/Data Structures/Set Specs.thy].
This specification expects from every operation to modify the tree in a way that the
inorder of the RBT is sorted with respect to (<). From this, it follows that the verified
RBT implementation is a BST [8, HOL/Library/Tree.thy]:

lemma bst iff sorted wrt less: "bst t ←→ sorted wrt (<) (inorder t)"

2.2.3 Red-Black Trees in Linux

Figure 2.2 shows the kernel implementation of an RBT node. The struct field “ rb

parent color” stores the pointer to the parent node, and at the same time, the color of
the node itself. This works because instances of “struct rb node” are at minimum four
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bytes aligned (the exact value is architecture-dependent). Thus the first two bits of an
“struct rb node” pointer are always zero. The kernel uses the first bit of “ rb parent

color” to store the node color and provides special functions to access the actual pointer
and color value [11].2

struct rb_node {

unsigned long __rb_parent_color;

struct rb_node *rb_right;

struct rb_node *rb_left;

} __attribute__((aligned(sizeof(long))));

Figure 2.2: Linux kernel RBT node [11, include/linux/rbtree.h]

“struct rb node” does not have a “data” pointer that could point to the data a node
stores. Instead, one must define a custom struct that stores (a pointer to) the data and
contains a field of type “struct rb node.” Data structures that do not provide a data
pointer on their own but expect to get embedded into a custom struct are called intrusive
containers. The Fuchsia operating system overviews the advantages and disadvantages of
(non-) intrusive containers in an operating system context [7].

2.3 Linux

2.3.1 Loadable Modules

Modules are compiled kernel code that can be inserted into a running kernel to extend
its capabilities. Rather than building all supported device drivers and functionality into
one big kernel, they can be distributed separately and loaded on demand.

For the work of this thesis, I used a loadable kernel module that exposes the kernel
RBT insert and delete operations, and a custom operation for printing out the current
RBT for userspace programs.

2.3.2 Testing

The kernel documentation describes a number of different tools for testing the kernel and
divides them into unit testing, code coverage and dynamic analysis tools [16, Kernel Testing
Guide]. The first two categories are of particular interest for this thesis.

2The source code in Linux version 5.12 has that explicit alignment attribute, but it may be obsolete and get
removed once the patch “rbtree: remove unneeded explicit alignment in struct rb node” is integrated [1].
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Depending on the test target, tests can either be executed in the kernel using KUnit or
in a normal userspace application using kselftests. KUnit provides an easy way to test
small, self-contained functionality directly in the kernel without exposing it. Kselftests
are favorable for testing an exposed kernel functionality such as a system call. If the
kernel does not directly expose a to-be-tested functionality, exposing it with the help of a
kernel module makes it possible to write test cases in userspace. One reason for doing so
is when writing a test case in the kernel would be too demanding.

Code coverage can be analyzed using gcov, the coverage testing tool shipped with the
GNU C compiler suite. However, gcov does not differentiate which userspace program
led to the execution of a kernel code area but collects coverage information of the whole
running kernel. To collect the kernel code coverage initiated from one user process, kcov
can be used instead. Kcov was initially developed for syzkaller, a coverage-guided kernel
fuzzer [17].

2.3.3 Communication between kernelspace and userspace

The Linux kernel provides different interfaces for userspace programs to interact with
it. The traditional one is a system call. However, alternative interfaces can be more
comfortable depending on how and what part of the kernel someone wants to use. The
following non-exhaustive list gives an overview of different Linux kernel interfaces [16,
The Linux driver implementer’s API guide, Filesystems in the Linux kernel]:

• System calls are suitable for functionality that is not tied to a specific physical
device and is of possible interest for all userspace applications.

• ioctl based interfaces are commonly used to communicate with device drivers.
Instead of defining an own system call for every driver, one can use the “ioctl”
system call. A specific driver is specified using a file descriptor, and this driver can
mostly decide on its own on the semantics of the remaining passed parameters.
Device drivers that use ioctl have to provide a stable ABI (Application Binary
Interface); that is, future kernels should not change existing interface endpoints for
backward compatibility reasons.

• sysfs is a pseudo-filesystem commonly mounted on /sys/ and provides an inter-
face to expose state information of the hardware, drivers, and other kernel data
structures. For example, the current temperature of every CPU core is listed there.
Sysfs users also have to provide a stable ABI.

• debugfs is similar to sysfs but with more freedom. It does not have to provide
a stable ABI and is by default only accessible as the root user. A prominent user

7



2 Preliminaries

of debugfs is the previously mentioned KUnit framework that publishes its test
results there. The testing module developed for this thesis also uses debugfs for
communication between kernel- and userspace. Debugfs is typically mounted on
/sys/kernel/debug/.
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3 Approach

This thesis aims to produce a high assurance of correctness for the Linux Red-Black tree
implementation. I obtain this assurance by comparing the Red-Black trees generated by
the Linux kernel with Red-Black trees generated by a verified implementation. To do this,
I used a flexible testing pipeline that is composed of three parts. Test case generation is
responsible for proposing RBT test cases that cover many distinct (corner-) cases. The
“test harness” program executes these test cases on the Kernel RBT and on the verified
RBT. I generated the verified RBT variant from a proven Isabelle/HOL implementation.
After the test harness executed an operation on both implementations, the test harness
compares the generated trees with a specific comparison method. Table 3.1 lists these
three categories and their supported strategies. Strategies of different categories can be
freely combined, though some combinations suit better than others.

3.1 Test Case Generation

The primary responsibility of the test case generation stage is to propose test cases that
cover a large part of the kernel RBT codebase. A test case consists of a sequence of RBT
operations. An RBT operation consists of a command and an optional key. The generation
stage supports three RBT-mutable commands:

data Cmd = Reset | Insert | Delete

Resetting a kernel tree means removing all keys from the tree and freeing the occupied
space. The analog verified operation is just returning an empty tree (a leaf). Immutable
commands like lookup or inorder could also be explicitly added to “Cmd”. However, as
these commands are trivial and adding them would considerably increase the testing
space, I left them out. Nevertheless, deleting a key in the kernel implementation requires
a lookup first. Therefore, delete tests lookup implicitly.

The test harness stores 64-bit unsigned integers (Word64 in Haskell) as the keys in the
Red-Black tree. This is mainly because the kernel provides convenient helper functions
to parse userspace string values of this type in kernelspace. The actual type of stored
data does not play any role in the kernel RBT implementation as it uses an intrinsic data
structure for the RBT nodes (see subsection 2.2.3). It is the responsibility of the kernel
RBT user to provide appropriate comparison functions (see subsection 3.2.1).
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3 Approach

Strategy Description

Test Case Generation Strategies for generating test cases

Random
Generate test cases randomly using a pseudo-random
number generator

Exhaustive Generate almost all possible test cases up to a limit
Symbolic Generate test cases with a symbolic execution engine

Comparison Method How to compare the kernel RBT against the verified RBT

Structural
The kernel RBT is only correct if it is equal to the verified
RBT

Invariant
RBTs can differ, but the kernel RBT must satisfy all RBT
invariants and must have the same inorder as the verified
RBT

Verified RBT Invariant Which verified Isabelle/HOL RBT variant to use for comparison

Default
The RBT variant distributed with Isabelle2021 and
described in Functional Algorithms, Verified! [13]

Linux to HOL
The RBT variant whose insert operation equals the kernel
RBT insert

Table 3.1: An overview of all implemented strategies for the testing pipeline.

If the test harness is supposed to generate test cases on its own rather than importing
these generated test cases from external tools like symbolic execution engines (see
subsection 3.1.3), then combining the list of commands with input keys is done with the
“buildInput” function:

type Input = (Cmd,Word64)

type TestCase a = [a]

buildInput :: [Word64] -> [Word64] -> [Cmd] -> TestCase Input

buildInput _ _ [] = []

buildInput (i:is) ds (Insert : cs) = (Insert, i) : buildInput is ds cs

buildInput is (d:ds) (Delete : cs) = (Delete, d) : buildInput is ds cs

buildInput _ _ _ = undefined

The first two lists—one for the insert and one for the delete command—provide the
keys that will be combined with the commands from the third list. The two lists have to
be long enough to match all occurrences of their respective command. The keys for the
delete operation (the second list) should optimally be the same as the keys for the insert
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operation (the first list). Otherwise, many delete operations will not change anything
because the chance could be high (depending on how the lists are constructed) that a
key to delete has not been inserted into the tree previously. “buildinput” is undefined
for reset commands because they do not expect a key. It is the responsibility of the input
generation strategy to populate this function with meaningful lists.

After building a list of test cases, they have to get executed on the verified Haskell RBT,
and kernel RBT:

type IRBT = Tree (Word64, Color)

data Result = Result {

input :: Input,

vTree :: IRBT,

kTreeIO :: Kernel.Handle -> IO IRBT }

vCmd :: IRBT -> Input -> IRBT

kCmd :: Input -> Kernel.Handle -> IO IRBT

buildResults :: [TestCase Input] -> [TestCase Result]

buildResults testCases = do

inputs <- testCases

let vTrees = tail $ scanl vCmd RBT.empty inputs

let kTrees = map kCmd inputs

return $ zipWith3 Result inputs vTrees kTrees

Functions “kCmd” and “vCmd” execute the right RBT operation based on the passed
command. Data type “Result” stores the input (command & key), the resulting verified
Haskell RBT, and a function that returns the resulting kernel RBT. The “Kernel.Handle”
parameter is used for communication with the kernel (see subsection 3.2.3). Subsection
3.2.3 explains in detail how the execution and communication with the kernel module
works.

3.1.1 Random

The random test case generation strategy populates the lists for “buildInput” in the
following way:

random :: Word64 -> Int -> [TestCase Result]

random n seed = do

let rndCmds = randoms seed

let rndXs = randoms seed

11
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let inputs = genericTake n (buildInput rndXs rndXs rndCmds)

buildResults [inputs]

The “randoms” function is a pseudo-random number generator that expects a seed value
from the test harness user. It generates an infinite list of values for types implementing
a corresponding type class that specifies the values (or a range) to consider in the
generation procedure. For the data type “Cmd”, these are the insert and delete commands.
The reset command is not required because the test harness resets the kernel RBT every
time before executing a new test case.

3.1.2 Exhaustive (scoped)

Exhaustive testing describes the procedure to test a program with all possible inputs. In
almost all cases, this is impossible. In the context of data structures, there always exists an
infinite sequence of operations to test. One solution to tackle this problem is limiting the
number of operations per test case on an RBT, and partitioning test cases into equivalence
classes [12]. It is reasonable to assume that if a test case hits an error, similar test cases
do as well. Therefore, these cases belong into one equivalence class and testing just one
of them is fine. This significantly reduces the testing space. For example, in the case of a
BST, if the test case “[(Insert,1), (Insert,2)]” leads to an error, then “[(Insert,4),
(Insert,8)]” probably also does because BSTs insert elements depending on their linear
order.

The “exhaustive” test case generation strategy limits the number of operations on an
RBT and puts all test cases with the same sequence of commands and linear ordering into
one equivalence class:

exhaustive :: Word64 -> [TestCase Result]

exhaustive n = do

let rep = genericReplicate

let distributions = [rep i Insert ++ rep (n-i) Delete | i <- [n,n-1..]]

let testCases =

concatMap (perm . buildInput [1..n] [1..n]) distributions

buildResults testCases

For every command distribution of length n, it builds a test case using the previously
introduced “buildInput” function. Then it generates all permutations of this test case. In
total, “exhaustive” generates (n + 1)n! cases. For n = 3, following cases are generated
(for space reason, I = Insert and D = Delete):

distributions = [ [I,I,I], [I,I,D], [I,D,D], [D,D,D] ]

testCases = [ [(I,1),(I,2),(I,3)], [(I,2),(I,1),(I,3)],

[(I,3),(I,2),(I,1)], [(I,2),(I,3),(I,1)], ... , [(D,1),(D,3),(D,2)] ]

12
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Because I use for both—the insert and delete command—the keys from one to n to
pair with the commands, a sequence like “[(I,1),(I,2),(D,2)]” is not an element of
“testCases”. For the “[I,I,D]” command distribution, The “buildInput” function pairs
the first and only delete command it encounters with the first key from the delete list—a
one. Therefore, the pair “(D,2)” is never created for the distribution “[I,I,D].” Con-
sidering this case would unnecessarily complicate the simple structure of the exhaustive
strategy. Instead, using a higher n generates a test case in which the previous test case
is part of: “[(I,1),(I,2),(D,2),(D,1)].” The test harness compares the kernel RBT
against the verified RBT after each operation, not just after executing all operations in a
test case. Therefore this sequence of length four covers the missing case.

3.1.3 Symbolic

A completely different approach to automatically generating a set of input sequences is
to use a symbolic execution tool [2]:

Instead of running code on manually- or randomly-constructed input, they
run it on symbolic input initially allowed to be “anything.” They substitute
program inputs with symbolic values and replace corresponding concrete pro-
gram operations with ones that manipulate symbolic values. When program
execution branches based on a symbolic value, the system (conceptually)
follows both branches, on each path maintaining a set of constraints called
the path condition which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by solving the current
path condition for concrete values. Assuming deterministic code, feeding this
concrete input to a raw, unmodified version of the checked code will make it
follow the same path and hit the same bug.

After generating test cases by symbolically executing an unverified program variant,
they can be automatically replayed on the unverified and verified program variant to
compare their results. Symbolic execution can generate a high code coverage and is
therefore also used in this thesis. Nevertheless, even confirming that all test cases for
every code path lead to the same results when replaying on an unverified and verified
program does not mean that the previously unverified variant is now verified. The
unverified version could lack a code path and thus a test case for this path is never
generated [12].

Two concerns that symbolic execution tools commonly face are how to deal with the
outer execution environment correctly and that every branch at least doubles the number
of paths the system has to follow (exponential growth; also called the path explosion
problem) [2]. Concerning this thesis, two additional difficulties arise. First, the Linux
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Red-Black tree library lives in kernelspace, but most symbolic execution tools only work
in userspace. Second, there is the question of how to model unbounded symbolic data
structures. I will elaborate on both difficulties in the following two subsections.

Difficulty: Symbolic Execution of Kernel Code

Classic symbolic execution tools only work in userspace, and symbolically executing a
big monolithic kernel like Linux suffers from the path explosion problem. To overcome
these issues, I isolated and lifted the kernel RBT implementation to userspace. The
implementation was already largely independent of the rest of the kernel. To successfully
compile the code in userspace, I had to remove the concurrency support from the RBT
implementation because it caused a lot of dependencies.

An alternative would be to use a tool that natively supports symbolic execution of
kernel code. According to my research, the S2E platform is the only tool that is capable of
doing so. Under the hood, it combines modified versions of the KLEE symbolic execution
engine and the QEMU machine virtualizer [3]. To tackle the path explosion problem, it
trades off the completeness, soundness (or both) of the generated paths for a lower time
complexity. Depending on the chosen consistency model, execution of code paths can
seamlessly switch between symbolic (generation of multiple paths when branching) and
concrete (follow just one branch) execution, possibly generating unsound and incomplete
paths when switching between these modes [3].

While lifting the kernel code to userspace required modifications to the actual code,
most of them were trivial and just removed code fragments. The advantage of symbolically
executing the RBT code in userspace is that it does not require trade-offs as with S2E.
Therefore, I symbolically analyzed the lifted code in userspace using KLEE.

Difficulty: Unbounded Symbolic Data Structures

My initial goal was to have a fully symbolic Red-Black tree and let KLEE figure out all
possible code paths. However, this is not possible because (in theory) data structures
can be infinitely large. Symbolically executing a lookup function on a fully symbolic tree
would never terminate because the symbolic execution engine always has to assume that
the left and the right subtrees are not leaves and the element to lookup is in one of them.
Thus, I had to specify some bound.

There are different options to bound an RBT. For example, one could define a limit on
the number of nodes, the height, or the sequence of operations to execute on the RBT.
One significant advantage of defining a limit on the sequence of operations is that it fits
nicely into the existing testing pipeline, which is why I followed this approach.
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To symbolically execute the RBT implementation, KLEE needs a wrapper with an entry
point:

1 int main() {
2 struct rb root rbt = RB ROOT; struct rb node *node;
3 struct data *data; struct stat stat;
4 off t size; char cmd, value;
5
6 fstat(STDIN FILENO, &stat);
7 size = stat.st size;
8 assert(size % 2 == 0);
9

10 for (int i = 0; i < size / 2; i++) {
11 cmd = getchar();
12 value = getchar();
13
14 if (cmd) {
15 // insert value into RBT, similar to kernel module
16 } else {
17 // delete value from RBT, similar to kernel module
18 }
19 }
20 }

This program iteratively reads two bytes from stdin until it reaches its end. They are
used to build the command–value pairs. The first byte indicates the command (insert or
delete), and the second one its value1. Line 6 to 8 assert that the file size is even so that
pairing does not fail later. An assertion statement is preferable here because it does not
branch while symbolically executing, like an “if” check would do. KLEE can now use a
symbolic stdin file with a specific size N from which the wrapper, starting from an empty
tree, can build up all possible RBTs using N/2 operations (assuming N is even):

$ klee --only-output-states-covering-new --libc=uclibc --posix-runtime \

userspace_RBT_wrapper.bc -sym-stdin <N>

The “libc” and “posix” arguments are required because the wrapper is interacting
with the environment (using “fstat()” and “getchar()”).

In essence, the “symbolic” and “exhaustive” strategies are considerably similar. They
both try to hit every path given a bound on the test case length. In the exhaustive strategy,
I used my intuition and knowledge about the algorithm to partition test cases into equiva-
lence classes to lower the number of test cases that follow the same path. In the symbolic
strategy, this happens automatically using the “--only-output-states-covering-new”
KLEE flag. For n = 6 (3 operations), KLEE generates the following statistics:

1The reason why I use 8 bit and not 64-bit for the value type like I did in the kernel module and test harness
is because of a long-standing bug in KLEE that makes parsing longer values impossible without unwanted
changes [9][Issue #30]. Nevertheless, 8-bit should be large enough to not restrict the possibility for
achieving a high code coverage.
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KLEE: done: completed paths = 48

KLEE: done: partially completed paths = 0

KLEE: done: generated tests = 15

KLEE pruned 33 out of 48 paths because they equal one of the 15 existing ones.
After running the above command, one has to extract the generated concrete stdin files
for all paths from KLEE’s binary test case format “*.ktest” which KLEE stored in the
“klee-last” directory:

$ ktest-tool --extract stdin klee-last/*.ktest

I have integrated a parser into the test harness that reads (from a specified directory) all
these stdin files that contain sequences of command–value pairs. After parsing them using
“parseStdins,” one can directly build the results with the “buildResults” function like
in the previous test strategies:

parseStdins :: FilePath ->IO (Either String [TestCase Input])

symbolic :: FilePath -> IO (Either String [TestCase Result])

symbolic = fmap (buildResults <$>) . parseStdins

The only difference to the previous strategies is that symbolic returns an “IO (Either

String [TestCase Result])” rather than just “[TestCase Result]” because it parses
a file (IO), and this can fail (Either)2. The “main” function handles a possible parsing
error.

3.2 Comparing Kernel and Verified Trees

3.2.1 RBT Kernel Module

Building every supported device driver and kernel feature into one big kernel can unnec-
essarily impact performance and available storage space if only a small subset of these
drivers and functionality is used. As an alternative to one big kernel, Linux supports
a modular approach. Kernel builders (like Linux distributions) can decide which non-
fundamental features and device drivers (called modules) they want to include into their
kernel directly. The other modules can be inserted (automatically) into a running kernel
when needed. Therefore they are also called loadable modules.

I developed a module that supports three kernel Red-Black tree operations: Reset
(empty RBT), insert, and delete. Additionally, I added a function to print out the kernel

2One could arguable use Haskell’s “ExceptT” monad transformer to handle the nested IO and Either monad,
but given the simple structure of the test harness, it turned out that just nesting them keeps the code
cleaner.
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RBT so the verified Haskell implementation can parse it. To use these operations and
the print function, I expose an interface that consists of two virtual files on the debugfs
filesystem. Userspace programs can then interact with these files to alter the kernel RBT3:

• /sys/kernel/debug/rbt if/key Reads or writes to this file set or get the key used
for insert and delete.

• /sys/kernel/debug/rbt if/cmd Writing 0 to this file resets the kernel RBT, 1 inserts
the previously specified key, and 2 deletes the key from the kernel RBT. Reading
this file prints out the current RBT.

The following listing shows the module code. I removed some bits of minor relevance
like the include header lines.

1 // #include ...
2 enum Cmd { RESET, INSERT, DELETE };
3
4 static struct dentry *rbt if root;
5 static struct rb root rbt = RB ROOT;
6 static u64 input key;
7
8 struct data {
9 struct rb node node;

10 u64 key;
11 };
12
13 #define data from node(from) (rb entry(from, struct data, node))
14
15 #define print(...) seq printf(m, VA ARGS )
16 #define print parent print(” (%llu,%s) ”, \
17 data from node(parent)−>key, rb is red(parent) ? ”Red” : ”Black”)
18
19 static int cmd show(struct seq file *m, void *p) {
20 struct rb node *node = rbt.rb node, *parent = NULL;
21 bool left = false;
22 while(true) {
23 if (!node) {
24 print(”Leaf”);
25
26 if (!parent)
27 break;
28
29 if (left) {
30 print parent;
31 node = parent−>rb right;
32 left = false;
33 } else {
34 while (rb parent(parent) && parent−>rb right == node) {

3Debugfs is typically mounted on “/sys/kernel/debug” but it does not have to; the user or the Linux
distribution can choose another path [16, Filesystems in the Linux kernel].
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35 print(”)”);
36 node = parent;
37 parent = rb parent(node);
38 }
39
40 if (parent−>rb right == node)
41 break;
42
43 print parent;
44 node = parent−>rb right;
45 left = false;
46 }
47 } else {
48 if (parent)
49 print(”(”);
50
51 print(”Node ”);
52 parent = node;
53 node = node−>rb left;
54 left = true;
55 }
56
57 }
58 print(”\n”);
59 return 0;
60 }

Function “cmd show” iteratively prints the kernel RBT in the style “Node (Leaf (3,Black)

(Node ...))” once the “cmd” file is read. To not burden the kernel stack with too many
function frames, I chose an iterative algorithm over a recursive one.

61 static int key cmp(const void * a, const struct rb node * b)
62 {
63 u64 a = *(typeof(a) *) a;
64 u64 b = data from node( b)−>key;
65 if (a < b)
66 return −1;
67 if (a > b)
68 return 1;
69 else
70 return 0;
71 }
72
73 static int node cmp(struct rb node *a, const struct rb node *b)
74 {
75 return key cmp(&data from node(a)−>key, b);
76 }

The internal kernel RBT interface expects a comparison function for the data stored in
the RBT. Function “key cmp” is used to find the correct node for deletion given some key.
Function “node cmp” is used to find the correct position to insert a new node.

77 ssize t cmd exec(struct file *file, const char user *ubuf, size t len, loff t *offp) {
78 int cmd;
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79 struct data *data, * n;
80 struct rb node *node;
81 int ret = kstrtoint from user(ubuf, len, 10, &cmd);
82 if (ret)
83 return ret;
84
85 switch (cmd) {
86 case RESET:
87 rbtree postorder for each entry safe(data, n, &rbt, node)
88 kfree(data);
89 rbt = RB ROOT;
90 break;
91 case INSERT:
92 data = kzalloc(sizeof(*data), GFP KERNEL);
93 data−>key = input key;
94 rb find add(&data−>node, &rbt, node cmp);
95 break;
96 case DELETE:
97 node = rb find(&input key, &rbt, key cmp);
98 if (!node)
99 break;

100 rb erase(node, &rbt);
101 kfree(data from node(node));
102 break;
103 default:
104 return −EINVAL;
105 }
106 return len;
107 }

Function “cmd exec” is responsible for executing a requested operation on the kernel
RBT. Like the Isabelle/HOL variant, the function “rb find add” only inserts new elements
into the tree and does not allow duplicates. In the delete case, the kernel does not provide
a dedicated function to delete a specific key, but one must first find the right node
separately before “erasing” it.

108 static int cmd open(struct inode *inode, struct file *file) {
109 return single open(file, cmd show, inode−>i private);
110 }
111
112 static const struct file operations cmd fops = {
113 .owner = THIS MODULE,
114 .open = cmd open,
115 .read = seq read,
116 .write = cmd exec,
117 .llseek = seq lseek,
118 .release = single release,
119 };
120
121 int init rbt if init(void) {
122 rbt if root = debugfs create dir(”rbt if”, NULL);
123 if (IS ERR(rbt if root)) {
124 if (rbt if root == ERR PTR(−ENODEV))
125 pr err(”debugfs support is missing for this kernel. \
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126 The test harness uses it for communication with this module”);
127 return PTR ERR(rbt if root);
128 }
129
130 debugfs create file(”cmd”, 0644, rbt if root, NULL, &cmd fops);
131 debugfs create u64(”key”, 0644, rbt if root, &input key);
132 return 0;
133 }
134
135 void exit rbt if exit(void) {
136 struct data * n, *pos;
137 debugfs remove recursive(rbt if root);
138 rbtree postorder for each entry safe(pos, n, &rbt, node)
139 kfree(pos);
140 }
141
142 // module information (license, author, entry & exit point)

The kernel calls the functions “rbt if init” and “rbt if exit” on module load and
unload—they set up and clean up the two virtual files on the debugfs filesystem. The
debugfs filesystem is a module on its own and does not have to be present on a running
kernel. Line 123 checks if debugfs is available and, if not, fails with an error message.
Moreover, on module exit, the RBT is freed.

3.2.2 Generating the Haskell RBT Implementation

To compare the kernel RBT to a verified RBT, one must first export the verified Is-
abelle/HOL to a target-language like Haskell. I chose Haskell because out of the lan-
guages the Isabelle code generator supports, Haskell is the one I am most comfortable
with. To export the required RBT parts, I created the dedicated theory file “RBT export”:

theory RBT export

imports
"HOL-Data Structures.RBT Set"

"HOL-Data Structures.Tree2"

"HOL-Library.Code Target Numeral"

HOL.Orderings

begin

When importing “HOL-Library.Code Target Numeral”, the code generator imple-
ments the HOL types “nat” and “int” by the target-language built-in integers [6][Adap-
tion to target language].

code printing
type class ord ⇀ (Haskell) "Prelude.Ord"

| constant Orderings.less ⇀ (Haskell) infixl 4 "<"

| constant Orderings.less eq ⇀ (Haskell) infixl 4 "<="

| type class preorder ⇀ (Haskell) "Prelude.Ord"
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| type class order ⇀ (Haskell) "Prelude.Ord"

| type class linorder ⇀ (Haskell) "Prelude.Ord"

One problem when using the exported code is that it defines its own type classes for
ordering elements and does not use Haskell’s built-in one (“Prelude.Ord”). Thus, to
store values of a specific type in the RBT, one must first create instances of these new type
classes for the type to store. For example, to insert values of the Haskell type Word64, one
must first create instances of the type classes “Ord”, “Preorder”, “Order”, and “Linorder”
because inserting an element into the RBT requires a linear ordering, and all previously
listed classes are superclasses of “Linorder”. To overcome this inconvenience and keep
the RBT interface still generic, I mapped the different HOL ordering type classes and
”compare” operators to Haskell’s built-in ones. These mappings are not safe because a
mistake could alter the behavior and invalidate the correctness of the Red-Black tree
algorithm. Nevertheless, the mappings are straightforward and allow me to store in
the RBT any Haskell type that is an instance of the built-in Ord type class. Keeping the
functions generic allowed me to match the type stored in the Haskell RBT to the type
stored in the kernel module RBT (unsigned 64-bit integer in the C kernel module; Word64
in Haskell).

Mapping all the different HOL orderings to Haskell’s linear ordering is strictly speaking
incorrect. Functions that previously worked on less strict orderings now only work for
linear ordered types. However, all the Isabelle/HOL RBT functions that need an ordering
expect linear ordered types, so this does not restrict anything in the RBT case.

definition rootBlack :: "’a rbt ⇒ bool" where
"rootBlack t ≡ color t = Black"

definition rbt :: "’a rbt ⇒ bool" where
"rbt t ≡ invc t ∧ invh t ∧ rootBlack t"

lemma "RBT Set.rbt t ≡ rbt t"

by (simp add: RBT Set.rbt def rbt def rootBlack def)

When the test harness detects a kernel tree that violates the Red-Black tree invariants
and properties, it prints out which one exactly got violated. For this, every invariant
must have a dedicated function that returns if this invariant holds for a given tree. The
invariant that the root has to be black is directly checked in the original HOL “rbt”
definition rather than in a dedicated function. Therefore, I moved that check into the
“rootBlack” function, which is then called in my modified “rbt” definition. The lemma
proves that my “rbt” definition is equivalent to the original one.

export code
rootBlack rbt

RBT Set.invc RBT Set.invh
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RBT Set.empty RBT Set.insert RBT Set.delete

Tree2.inorder

equal tree inst.equal tree

in Haskell module name RBT.Verified (string classes)

end

The command “export code” exports all specified functions, definitions, and depen-
dencies and places them into one Haskell module. Everything explicitly defined is also
exported in the Haskell module itself to make it available to other modules. To have a
“compare trees” function, I exported “equal tree inst.equal tree”. While the code
generator creates the Haskell instance “Eq Color”, it does not create the instance “Eq a

=> Eq (Tree a)”. Therefore, I have to compare trees with “equal tree” and not with
“(==)” in Haskell.

The “string classes” parameter is important for this thesis. “It adds a ‘deriving
(Read, Show)’ clause to each appropriate datatype declaration” [6]. The “Read a =>

Read (Tree a)” instance is used for parsing the kernel trees and in the following subsec-
tion, I explain this usage in detail.

3.2.3 Interaction with the Kernel Module from Haskell

1 {−# LANGUAGE RecordWildCards #−}
2 module RBT . Kernel ({− e x p o r t s . . . −}) where
3
4 −− impor t s . . .
5
6 type IRBT = Tree (Word64 , Color )
7
8 keyF i l e = ” / sys / kerne l /debug/ r b t i f /key ”
9 cmdFile = ” / sys / kerne l /debug/ r b t i f /cmd”

10
11 data Cmd = Reset | I n s e r t | Delete deriving (Enum, Bounded)
12
13 printCmd hdl = hPrint hdl . fromEnum
14
15 instance Show Cmd where
16 show Reset = ” r e s e t t i n g ”
17 show I n s e r t = ” i n s e r t i n g ”
18 show Delete = ” d e l e t i n g ”

The “Cmd” data constructors are in the same order as the “enum Cmd” in the kernel
module. Thus, deriving “Enum” maps the same integer value to them. “printCmd” writes
this value to a file associated with a kernel handle and thus executes a command on the
kernel RBT.
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19 data Handle = Handle {
20 keyHdl : : GHC. IO . Handle . Handle ,
21 cmdHdl : : GHC. IO . Handle . Handle }
22
23 i n i t : : IO RBT . Kernel . Handle
24 i n i t = do
25 keyHdl <− openFile keyF i l e WriteMode
26 cmdHdl <− openFile cmdFile ReadWriteMode
27 l e t hdl = Handle { . .}
28 hSetBuffering keyHdl LineBuffering
29 hSetBuffering cmdHdl LineBuffering
30 r e s e t hdl
31 return hdl
32
33 cleanup : : RBT . Kernel . Handle −> IO ()
34 cleanup hdl = do
35 r e s e t hdl
36 hClose $ keyHdl hdl
37 hClose $ cmdHdl hdl

Function “init” resets the kernel tree and returns two file handles—one for the “key”
file and one for the “cmd” file. Function “cleanup” resets the kernel tree again and closes
the handles.

38 exec : : Cmd −> Maybe Word64 −> RBT . Kernel . Handle −> IO IRBT
39 exec cmd x Handle { . .} = do
40 whenJust x $ hPrint keyHdl
41 printCmd cmdHdl cmd
42 hSeek cmdHdl AbsoluteSeek 0
43 read <$> hGetLine cmdHdl
44
45 r e s e t : : RBT . Kernel . Handle −> IO IRBT
46 r e s e t hdl = do
47 t r e e <− exec Reset Nothing hdl
48 a s s e r t (RBT . e q u a l t r e e RBT . empty t r e e ) $ return t r e e
49
50 inser t : : RBT . Kernel . Handle −> Word64 −> IO IRBT
51 inser t hdl x = exec I n s e r t ( Just x ) hdl
52
53 delete : : RBT . Kernel . Handle −> Word64 −> IO IRBT
54 delete hdl x = exec Delete ( Just x ) hdl

Function “exec” first optionally sends a key to the kernel module by writing into the
appropriate “key” file and then executes the given command. After execution, it parses
the RBT string with the “read” function, which is only possible because the data type
“Tree a” is deriving the “Read” type class.

3.2.4 Comparison Strategies

In general, there exist two methods to compare a kernel with a verified RBT. Both require
that the test harness executes the same list of operations (insert/delete element) on the

23



3 Approach

verified Haskell implementation and on the kernel implementation. After each operation,
the test harness has to compare the state of the kernel RBT with the correct Haskell RBT
state. This comparison can either happen on a structural or invariant level.

On the structural level, the test harness expects that the kernel produces the same trees
as the verified RBT after each operation. This approach has the advantage that it barely
has to compare if both trees are built in exactly the same way (including node color and
key), which is possible in linear time. A disadvantage is that it expects both algorithms
to behave in the exact same way. Unideal, the RBT invariants introduced in Section 2.2
allow a certain degree of freedom. As an example, after inserting the numbers from 1 to
3, the kernel and original Isabelle/HOL implementation produce the following trees:

Verified: B (B Leaf 1 Leaf) 2 (B Leaf 3 Leaf)

Kernel: B (R Leaf 1 Leaf) 2 (R Leaf 3 Leaf)

Both are valid RBTs. In this case, only the colors differ. Inserting additional elements
can lead to more structural differences. In subsection 3.2.5, I ported the kernel RBT insert
variant to HOL and proved it correct. This makes structural comparisons at least for the
insert function possible.

With the invariant method, the test harness checks if the kernel trees satisfy the RBT
and BST invariants, and store the expected elements. To check the RBT invariant, the test
harness uses the Isabelle/HOL “rbt” definition introduced in section 2.2. To check if all
expected elements exist in the kernel RBT and that the tree satisfies the binary search tree
invariant, it only has to compare the inorder of the kernel tree with that of the verified
tree. From the same inorder, it follows that the kernel RBT also has to be a BST (see
section 2.2 for the proof). If the kernel RBT does not satisfy all invariants and properties,
the test harness prints which one(s) got violated.

3.2.5 Verifying the Kernel RBT Variant

As the Red-Black trees generated by the kernel differ from the default Isabelle/HOL
RB-trees, I aimed to formalize the kernel variant in HOL and prove it correct. Within
the time scope of this thesis, I succeeded in formalizing and proving the kernel insert
operation in HOL by modifying the original Isabelle/HOL implementation and proof.

The kernel insert operation only differs from the original Isabelle one in how RB-trees
are balanced and recolored. Modifying the “baliL” and “baliR” (balanceInsert) was
enough to equalize the variants on the structural level. The following shows first the
original “baliL” [8, HOL/Data Structures/RBT.thy] and second my kernel variant. The
“baliR” function equations are symmetric for both variants:

fun baliL :: "’a rbt ⇒ ’a ⇒ ’a rbt ⇒ ’a rbt" where
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"baliL (R (R t1 a t2) b t3) c t4 = R (B t1 a t2) b (B t3 c t4)" |

"baliL (R t1 a (R t2 b t3)) c t4 = R (B t1 a t2) b (B t3 c t4)" |

"baliL t1 a t2 = B t1 a t2"

fun baliL :: "’a rbt ⇒ ’a ⇒ ’a rbt ⇒ ’a rbt" where
"baliL (R (R t1 n t2) p t3) g (R t4 u t5) = R (B (R t1 n t2) p t3) g (B t4 u t5)" |

"baliL (R t1 p (R t2 n t3)) g (R t4 u t5) = R (B t1 p (R t2 n t3)) g (B t4 u t5)" |

"baliL (R t1 p (R t2 n t3)) g t4 = B (R t1 p t2) n (R t3 g t4)" |

"baliL (R (R t1 n t2) p t3) g t4 = B (R t1 n t2) p (R t3 g t4)" |

"baliL t1 a t2 = B t1 a t2"

The proof for this alternative balance is based on the original Isabelle one [8, HOL/-
Data Structures/RBT Set.thy, 13]. I only had to verify that the kernel variant preserves
all color requirements because the rest of the proof for the insert function was still valid.
The following shows the Red-Black tree color invariant that “baliL” and “baliR”, and in
the end, the overall “ins” function have to preserve:

fun invc :: "’a rbt ⇒ bool" where
"invc Leaf = True" |

"invc (Node l (a,c) r) =

((c = Red −→ color l = Black ∧ color r = Black) ∧ invc l ∧ invc r)"

The check if the root is black (which is a requirement for an RBT) does not happen in
“invc” but in the “rbt” invariant because this simplifies verification.

One of the two critical parts was to find the weaker color invariant that holds while
balancing the tree after a new element has been inserted:

fun invc2 :: "’a rbt ⇒ bool" where
"invc2 Leaf = True" |

"invc2 (Node l ( ,c) r) =

((c = Red −→ color l = Black ∨ color r = Black) ∧ invc l ∧ invc r)"

This invariant is defined in exactly the same way as the stronger “invc,” with the
exception that if the root node is red, just one of the subtrees has to be black. For the
subtrees themselves, the stronger “invc” must hold again.

With this modified weak invariant, the lemma from the original proof that “baliL”
produces a correctly colored RBT—given the left tree is only weakly colored—holds again.
The proof for “baliR” is symmetric:

lemma invc baliL:

"[[ invc2 l; invc r ]] =⇒ invc (baliL l a r)"

by (induct l a r rule: baliL.induct) auto

For the subsequent proof, I needed another weak version of “invc,” which was also
used in the original Isabelle RBT proof. After painting the root black, “invc” must hold
again:
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abbreviation invc3 :: "’a rbt ⇒ bool" where
"invc3 t ≡ invc(paint Black t)"

In addition, I had to add the lemma that “invc” implies “invc3”, similar to the existing
“invc2I” lemma from the original proof:

lemma invc2I: "invc t =⇒ invc2 t"

by (cases t rule: tree2 cases) simp+

lemma invc3I: "invc t =⇒ invc3 t"

by (cases t rule: tree2 cases) simp+

For the final insert theorem, I needed a lemma that relates all three color invariants to
inserting an element into a tree with a red root:

lemma ins red invcs:

"[[ invc t; invc3 (ins x t); color t = Red ]] =⇒ invc2 (ins x t)"

by (induct x t rule: ins.induct) auto

“ins” does not necessarily produce a black root node which is the reason why the
lemma does not imply “invc (ins x t)”. Though, as an RBT is required to have a black
root node, the root is recolored afterward:

definition insert :: "’a::linorder ⇒ ’a rbt ⇒ ’a rbt" where
"insert x t = paint Black (ins x t)"

In the end, I added this lemma as a simplification rule to the original “invc ins” lemma
which states that after inserting a value into an properly colored RBT, “ins” returns a
properly colored tree back (optionally painting a previous red root to black after insert):

lemma invc ins: "invc t =⇒ invc3 (ins x t) ∧ (color t = Black −→ invc (ins x t))"

by (induct x t rule: ins.induct)

(auto simp: invc baliL invc baliR invc2I invc3I ins red invcs)

This finishes the proof that “ins” preserves the color invariant. The rest of the RBT
insert proof is equal to the original one.
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To evaluate the correctness of the kernel RBT implementation, I ran the test harness with
all three input generation strategies. It did not detect any malformed Red-Black trees.
Table 4.1 summarizes the (total) executed and compared operations.

Coverage %

Strategy Parameter Operations Time (min) core core+auxiliary

random n=50,000 50,000 134 92.35 72.22
exhaustive n=9 36,288,000 13 93.44 73.08
symbolic see sec. 3.1.3 248 110 95.08 74.36

Total 36,338,248 257 99.45 77.78

Table 4.1: Overview of all successfully compared operations per test case generation
strategy. For testing the symbolic strategy, I used the previously generated test
cases from subsection 3.1.3. The time datum includes the symbolic execution
with KLEE.

In comparison to random, one can execute and compare far more operations in less
time with the exhaustive generation strategy. The reason for this is that the random RBTs
can get very large and checking all invariants on the unverified RBTs takes nonlinear
time. On the other hand, the trees in the exhaustive strategy do not get large. Therefore,
the comparison time is negligible. In the case of this evaluation, the kernel RBT is reset to
an empty tree after every 9th operation in the exhaustive strategy. The major drawback
of exhaustive is that it exponentially grows. For higher n, execution takes significantly
longer.

The table also lists the achieved line coverage per strategy in the kernel RBT that
I previously lifted into userspace (see section 4.1 for the methodology). Column
“core+auxiliary” describes the line coverage of the whole Red-Black tree file, including
auxiliary functions that the test harness is not expected to test and use (like “rb first”,
“rb next”, “rb last”, . . . ). Column “core” describes the coverage without these unused
auxiliary functions. All strategies achieve an almost identical high line coverage, however,
the exhaustive strategy achieves this in a fraction of time in comparison to the others.
Random was the only strategy in this test that achieved a 100% coverage for the insert
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and delete routine, but because it only calls the reset command once (after executing all
other commands) it did not achieve a full coverage for the reset routine as well. Unifying
the coverage data of all strategies leads to 99.45% for “core.” In fact, just one line in the
reset routine is not hit.

This high total line coverage and the millions of successful test runs increase the
confidence that the kernel RBT implementation is correct and that the test pipeline built
in this thesis successfully reached this goal of a higher assurance. It also suggests that
testing with different strategies, as I did in this thesis, is a viable option that can help in
covering many different cases.

4.1 Collecting Code Coverage

The kernel currently provides two ways to gather coverage information (see subsec-
tion 2.3.2). Unfortunately, none of them is suitable for this thesis. “gcov” collects
coverage data for the whole kernel. Therefore, I cannot differentiate if a line in the
Red-Black tree was executed by my kernel module or another kernel subsystem that also
uses Red-Black trees. The same applies to “kcov.” With kcov, one can specify a process
whose system calls shall be used as a starting point to collect coverage data. The problem
is that when my test harness issues a “read” or “write” system call, my kernel module
that executes the RBT operations does not get immediately called. The kernel has to
interpret the system call first and find the correct function to execute. In between these
two steps, the kernel can use other RBTs to fulfill this task. These RBT operations are
also counted into coverage, even though I am only interested in the RBT code coverage
initiated by my kernel module. For this exact same reason, the kernel developers disabled
the kcov coverage collection for the RBT implementation [11][lib/Makefile]:

# These files are disabled because they produce lots of non-interesting

# and/or flaky coverage that is not a function of syscall inputs.

# For example, rbtree can be global and individual rotations don’t

# correlate with inputs.

KCOV_INSTRUMENT_rbtree.o := n

However, I can use my userspace kernel RBT implementation and analyze its code
coverage in userspace using gcov. This will not give the same results as a coverage
analysis in kernelspace because I had to modify the lifted implementation to compile
it in userspace. Nevertheless, it gives a good overview of what is (not) tested and an
acceptable way to compare the different strategies.

In order to pipe the “random” and “exhaustive” test cases into the userspace RBT, I
had to extend the test harness with a function to print them out rather than executing

28



4 Evaluation

them. By adding a simple parser to the existing userspace RBT wrapper, these test cases
could then be executed in the userspace RBT and gcov is able to simultaneously collect
coverage information. For they symbolic strategy, the wrapper does not need any changes
because it was initially built exactly for this strategy (see subsection 3.1.3).

4.2 Testing the Test Harness

Because the test harness did not report any error, it is important to test if the error
detection works as expected. My initial approach was to introduce a bug into the kernel
RBT implementation, such as removing one required tree rotation and checking if any
testing strategy can find the error. Moreover, this would allow me to measure the
effectiveness of the different strategies. Interestingly, however, whenever I introduced
an error into the insert or delete routine that only violates the Red-Black tree invariants
but does not alter the stored elements, the kernel crashed while booting (“NULL pointer

dereference”). The error happens in the memory subsystem that uses augmented Red-
Black trees, which in turn expect from the core Red-Black tree implementation to behave
correctly. Therefore, I decided not to add an error into the kernel RBT implementation
but in my custom kernel module used as an interface between the kernel RBT and the test
harness. After encountering the second insert operation, the kernel module maliciously
paints the root node red. This procedure does not help in comparing the effectiveness
of the different test case generation strategies to find an error, but at least it allows me
to check the correctness of the test harness to some extent. For the first failed test case,
command “# rbtTestHarness exhaustive -n 2” returns the following error message:

After inserting 2 following invariants are violated: color, root_black

Kernel tree before: Node Leaf (1,Black) Leaf

Kernel tree after: Node Leaf (1,Red) (Node Leaf (2,Red) Leaf)

Verified tree after: Node Leaf (1,Black) (Node Leaf (2,Red) Leaf)

The test harness lists as expected the violated invariants, the kernel trees before and
after executing the operation, and the verified RBT after executing the operation on the
verified implementation. Thus, the error detection by the test harness was successful.
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Since Linux version 3.7 (released in December 2012), the kernel provides its own testing
module for its Red-Black tree implementation [11][lib/rbtree test.c]. KUnit, introduced
in subsection 2.3.2, is a unit testing framework for the Linux kernel and was released in
January 2020 with Linux version 5.5 [11]. The in-kernel RBT tests have not been ported
to KUnit yet and instead use a kernel module that, when loaded, instantly executes a test
suite, prints the test results and unloads itself after it.

The module performs a set of insert operations and deletes these elements again
afterward. In between every operation, it checks all Red-Black tree invariants. Moreover,
it measures the latency of these operations.

In comparison to my approach, the in-kernel module tests only a single test case that
manipulates the tree—inserting a previously defined number of nodes and removing all
of them afterward again. Thus, the in-kernel module cannot find potential bugs caused
by a different ordering of insertion and deletion. Moreover, the in-kernel test module
does not use and test the new helper functions introduced in kernel version 5.12 for RBTs
(as my module does) but uses unverified RBT helper functions to check the correctness of
the RBT implementation itself. Lastly, the in-kernel testing module does not support a
structural comparison, while my testing pipeline supports it at least for insert operations.
Directly comparing the structure of the kernel RBT against the verified RBT takes only
linear time and makes tests with larger trees efficient.

The major advantage of the in-kernel module is that it also tests the auxiliary functions
used to build augmented RBTs; and that Haskell is not a requirement to compile the test
suite.

Kernel verification

To the best of my knowledge, this is the first attempt to test a Linux data structure
against a formally verified one. Nevertheless, formal verification is not a novel topic
in kernel research. Liang et al. verified, using a model checker, a significant part of
the Linux RCU implementation, a high-performance synchronization mechanism used
throughout the kernel, including in the Red-Black tree implementation [10]. Efremov
et al. deductively verified 23 memory- and string-related kernel library functions like
“memcpy” and “strcmp” [4]. Zakharov et al. developed a set of Linux driver verification
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tools that allow to create a set of specification rules for the kernel core API and verify
their correct usage by drivers.
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In this thesis, I executed and verified the correctness of over 30 million kernel Red-Black
tree operations by comparing their results against verified ones. For this, I implemented
and evaluated different testing strategies, including translating kernel C code to Is-
abelle/HOL and proving it correct. In the end, this effort constructed a high assurance of
a functionally correct Linux Red-Black tree algorithm.

6.1 Similar Test Procedures for other Kernel Subsystems

The kernel Red-Black tree implementation has existed for more than two decades and is
an integral part of the kernel. For a data structure implementation like this, the time of
existence without known bugs is in itself a high assurance of correctness. Nevertheless,
the kernel RBT implementation underwent some modifications in this long period. A
testing pipeline like the one presented in this thesis can significantly help in assuring
that a modification or a newly implemented data structure is functionally correct. If the
invariants of a data structure are not as ambiguous as the RBTs are, directly comparing
the results of a kernel implementation against the results of a verified one is most often a
simple task, especially when generating the test cases randomly.

For kernel code other than data structures, a verified variant or at least a formal
specification hardly ever exists; and in connection with the testing procedure of this
thesis, it would not be worth creating one in my opinion. Modeling and proving complex
kernel code is much more demanding than it is for most data structures. Moreover, the
Linux kernel changes at a high rate, and as long as the Linux developers do not want to
maintain formal models and proofs, they will get obsolete quickly.

6.2 Future Work

In this thesis, I concentrated on the correctness of the core Red-Black tree algorithm.
However, Linux also supports concurrent access and modification of Red-Black trees using
the RCU synchronization mechanism. It is an open question of how to extend the testing
pipeline of this thesis to assure the correctness of RBTs in a concurrent context with high
confidence.
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6 Conclusion

Moreover, the Linux RBT insert to Isabelle/HOL verification leads to the task of also
formalizing the kernel RBT delete variant in HOL and proving it correct. This would
allow comparing all RBT operations efficiently on a structural level.
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