
Testing the Kernel against
Verified Oracles

Based on Mete’s bachelor’s thesis: Testing the Red Black Trees of the Linux Kernel against a Formally Verified Variant

About us

Mete Polat <metepolat2000@gmail.com>

(very soon graduated) undergraduate at the
Technical University of Munich (TUM)

Interested in the development of high-assurance
software stacks using formal verification

Lukas Bulwahn <lukas.bulwahn@gmail.com>

PhD in formal methods, Contributor to the
theorem prover Isabelle during PhD

Chief Expert at Elektrobit:

- Interested in safety argumentations for
Linux-based systems, active in ELISA
community

- Kernel janitor

mailto:metepolat2000@gmail.com
mailto:lukas.bulwahn@gmail.com

Motivation for using verified oracles

Verify the existing implementation:
- Model all needed details of the C

semantics in a theorem prover
- Prove implementation correct with

increased proof complexity due to
performance optimisations.

Confidence in
Correctness

Engineering Effort

Unit testing:
- Write a few test cases and hope it is

good enough to find the bugs...

Testing against a verified oracle:
- Verify an equivalent implementation

without performance optimisations
- Show equivalence by testing both

implementations

⇒ Combines testing and verification world

Our concrete example

We use Isabelle [1].

Isabelle = proof assistant (for proving mathematical theorems and software) for formal verification (a
human creates machine-checked correctness proof)

Isabelle developers verified a Red-Black Tree implementation in Isabelle. (Our verified test oracle)

Kernel developers made a Red-Black Tree implementation in the kernel. (Our implementation under test)

We test the equivalence of those two implementations extensively.

Another example, see: https://www21.in.tum.de/students/verified_testing/index.html

[1] https://isabelle.in.tum.de

https://www21.in.tum.de/students/verified_testing/index.html
https://isabelle.in.tum.de/

RBT testing pipeline

Test case generator

Verified executable RBT Formally
verified RBT

Kernel module exposing
RBT operationsKernel

Compare RBTs

source code: https://github.com/metp/kernel-vs-verified-rbt

https://github.com/metp/kernel-vs-verified-rbt

RBT testing pipeline

Test case generator

Verified executable RBT Formally
verified RBT

Kernel module exposing
RBT operationsKernel

Compare RBTs

source code: https://github.com/metp/kernel-vs-verified-rbt

https://github.com/metp/kernel-vs-verified-rbt

/sys/kernel/debug/rbt_if/

❏ cmd
❏ Reading prints tree
❏ Write 0 resets tree
❏ Write 1 inserts key
❏ Write 2 deletes key

❏ key

RBT testing pipeline

Test case generator

Verified executable RBT Formally
verified RBT

Kernel module exposing
RBT operationsKernel

Compare RBTs

source code: https://github.com/metp/kernel-vs-verified-rbt

https://github.com/metp/kernel-vs-verified-rbt

How to formally verify (functional) data structures?

Basic idea: Use the same methodologies as mathematicians use

If you are really interested: https://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/RBT_Set.html

https://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/RBT_Set.html

In the end, these equations are just
mathematical functions, so we can
use standard proof techniques.

RBT testing pipeline

Test case generator

Verified executable RBT Formally
verified RBT

Kernel module exposing
RBT operationsKernel

Compare RBTs

source code: https://github.com/metp/kernel-vs-verified-rbt

https://github.com/metp/kernel-vs-verified-rbt

Just compare the verified trees against the Linux ones, right?

2

1 3

2

1 3

Verified RBTLinux RBT

RBT testing pipeline

Test case generator

Verified executable RBT Formally
verified RBT

Kernel module exposing
RBT operationsKernel

Compare RBTs

source code: https://github.com/metp/kernel-vs-verified-rbt

https://github.com/metp/kernel-vs-verified-rbt

Three different test case generators

❏ Random: use random values as input
❏ Exhaustive: use all values within a small scope as input
❏ Symbolic: use symbolic values as input and refine symbolic values as needed

Discussions

1. Test oracles accepted by the kernel community?
How to get this upstream?

2. How to collect coverage of globally used functions?
lib/Makefile:
These files are disabled because they produce lots of non-interesting and/or
flaky coverage that is not a function of syscall inputs.
For example, rbtree can be global and individual rotations don’t
correlate with inputs.
KCOV_INSTRUMENT_rbtree.o := n

3. Symbolic execution kernel pipeline in combination with oracles?

