
Detecting semantic bugs

using differential fuzzing

Mara Mihali
Linux Plumbers 2021

Many classes of bugs are easy to detect...

Many classes of bugs are easy to detect...

● cause assertion failures

● crash the system

● trigger other forms of undefined behaviour

○ detectable using dynamic or static analysis tools (e.g. KASAN)

Many classes of bugs are easy to detect...

● cause assertion failures

● crash the system

● trigger other forms of undefined behaviour

○ detectable using dynamic or static analysis tools (e.g. KASAN)

● Why are semantic bugs different?

○ make program operate incorrectly, possibly producing unintended output

Many classes of bugs are easy to detect...

● cause assertion failures

● crash the system

● trigger other forms of undefined behaviour

○ detectable using dynamic or static analysis tools (e.g. KASAN)

● Why are semantic bugs different?

○ make program operate incorrectly, possibly producing unintended output

○ but might not crash the program or trigger assertion failures

Many classes of bugs are easy to detect...

● cause assertion failures

● crash the system

● trigger other forms of undefined behaviour

○ detectable using dynamic or static analysis tools (e.g. KASAN)

● Why are semantic bugs different?

○ make program operate incorrectly, possibly producing unintended output

○ but might not crash the program or trigger assertion failures

■ not detectable using existing analysis tools

■ require the developer to manually inspect and test the program

How can we find semantic bugs?

Testing a system’s specification

● a specification formalises the system’s intended behaviour

● this could be used to write tests in order to detect semantic bugs

Testing a system’s specification

● a specification formalises the system’s intended behaviour

● this could be used to write tests in order to detect semantic bugs

● gets more difficult to achieve and maintain as the size of the system increases

Testing a system’s specification

● a specification formalises the system’s intended behaviour

● this could be used to write tests in order to detect semantic bugs

● gets more difficult to achieve and maintain as the size of the system increases

● some existing, large systems have no centralised specification

Testing a system’s specification

● a specification formalises the system’s intended behaviour

● this could be used to write tests in order to detect semantic bugs

● Linux kernel

○ specification = documentation + man pages + implied expectations of user programs

● gets more difficult to achieve and maintain as the size of the system increases

● some existing, large systems have no centralised specification

Testing a system’s specification

● a specification formalises the system’s intended behaviour

● this could be used to write tests in order to detect semantic bugs

● Linux kernel

○ specification = documentation + man pages + implied expectations of user programs

○ test suites available to detect regressions

■ but require significant amount of engineering effort to extend and maintain

● gets more difficult to achieve and maintain as the size of the system increases

● some existing, large systems have no centralised specification

Differential Fuzzing

● automates detection of semantic bugs

● provides same input to different implementations of the same system and cross-compares resulting behaviour

● if systems disagree, at least one of them is wrong

Differential Fuzzing

● automates detection of semantic bugs

● provides same input to different implementations of the same system and cross-compares resulting behaviour

● if systems disagree, at least one of them is wrong

● Differential fuzzing for Linux Kernel

○ non-trivial, several technical challenges involved

Differential Fuzzing

● automates detection of semantic bugs

● provides same input to different implementations of the same system and cross-compares resulting behaviour

● if systems disagree, at least one of them is wrong

● Differential fuzzing for Linux Kernel

○ non-trivial, several technical challenges involved

■ kernel nondeterminism

Differential Fuzzing

● automates detection of semantic bugs

● provides same input to different implementations of the same system and cross-compares resulting behaviour

● if systems disagree, at least one of them is wrong

● programs with non-deterministic behaviour

● concurrency

● resource exhaustion

● background activity

● timing dependencies

● global accumulated state

● Differential fuzzing for Linux Kernel

○ non-trivial, several technical challenges involved

■ kernel nondeterminism

Differential Fuzzing

● automates detection of semantic bugs

● provides same input to different implementations of the same system and cross-compares resulting behaviour

● if systems disagree, at least one of them is wrong

● programs with non-deterministic behaviour

● concurrency

● resource exhaustion

● background activity

● timing dependencies

● global accumulated state

■ implementation-defined behaviour

● Differential fuzzing for Linux Kernel

○ non-trivial, several technical challenges involved

■ kernel nondeterminism

Differential Fuzzing

● automates detection of semantic bugs

● provides same input to different implementations of the same system and cross-compares resulting behaviour

● if systems disagree, at least one of them is wrong

● programs with non-deterministic behaviour

● concurrency

● resource exhaustion

● background activity

● timing dependencies

● global accumulated state

■ implementation-defined behaviour

■ state space of the input is unbounded

● Differential fuzzing for Linux Kernel

○ non-trivial, several technical challenges involved

■ kernel nondeterminism

Comparison Candidates

● LTS vs mainline

○ prevent bugs from reaching the next release

● different LTS releases

○ neighbouring: not many intentional differences but most bugs are present in both versions

○ distant: need a mechanism to whitelist intentional differences

● minor LTS updates

○ a way to ensure bugs were actually fixed by the update

● different kernel implementation (Linux vs gVisor)

○ could uncover real semantic bugs

○ however, many false positives (due to intentional differences) that need to be accounted for

syz-verifier

● differential fuzzing tool for the Linux kernel

● part of the syzkaller project, additionally providing unsupervised coverage-guided kernel fuzzing

● generates a continuous stream of random programs (i.e. sequences of syscalls)

● dispatches the programs for execution on different versions of the Linux kernel

● gathers and verifies whether the returned results are the same for all kernels

● for each syscall, syz-verifier reports:

○ errno

○ whether the VM crashed executing the program

● in cases of mismatches, syz-verifier creates an execution report for the program for further inspection

Architecture Overview

Host Level

Guest Level

Architecture Overview
syz-verifier

Host Level

Guest Level

main
utility

Architecture Overview
syz-verifier

virtual machine

Host Level

Guest Level

VM management

main
utility

Kernel

Architecture Overview

Runner

syz-verifier

virtual machine

Host Level

Guest Level

VM management

main
utility

Kernel

programs

Architecture Overview

Runner

syz-verifier

virtual machine

Host Level

Guest Level

VM management

main
utility

Kernel

program
executor

input

programs

Architecture Overview

Runner

syz-verifier

virtual machine

Host Level

Guest Level

VM management

main
utility

Kernel

program
executor

input

syscallsresults

programs

Architecture Overview

Runner

syz-verifier

virtual machine

Host Level

Guest Level

VM management

main
utility

Verifier

Kernel

results

program
executorresults

res
ult

s

input

syscallsresults

programs

Architecture Overview

Runner

workdir

syz-verifier

virtual machine

Host Level

Guest Level

VM management

main
utility

Verifier

Statistics

Kernel

results

program
executorresults

res
ult

s
if mismatch

 report

stats persistent storage

reports

statistics

input

syscallsresults

programs

Bisecting Mismatches

io_uring_setup

io_uring_setup

● Old Kernel (v5.10.47) : EBADF (bad file descriptor)

● New Kernel (v5.13): ENXIO (no such device or address)

io_uring_setup

● Old Kernel (v5.10.47) : EBADF (bad file descriptor)

● New Kernel (v5.13): ENXIO (no such device or address)

io_uring_setup

● Old Kernel (v5.10.47) : EBADF (bad file descriptor)

● New Kernel (v5.13): ENXIO (no such device or address)

Change not documented in the
commit description

Proprietary + Confidential

perf_event_open

34

Proprietary + Confidential

perf_event_open

● Old Kernel (v5.12) : E2BIG (argument list too long)

● New Kernel (v5.13): EINVAL (invalid argument)

35

Proprietary + Confidential

perf_event_open

● Old Kernel (v5.12) : E2BIG (argument list too long)

● New Kernel (v5.13): EINVAL (invalid argument)

…...

36

Fixing sources of nondeterminism

Fixing sources of nondeterminism

● favoring single-threaded mode in program execution

○ avoids a system call failing because a previous one that it depends on hasn’t executed yet

○ e.g. calling write before calling open on a file descriptor

Fixing sources of nondeterminism

● favoring single-threaded mode in program execution

○ avoids a system call failing because a previous one that it depends on hasn’t executed yet

○ e.g. calling write before calling open on a file descriptor

● ensure initial state for each executed program is identical

○ avoids false positives occuring because of accumulated hidden state

Fixing sources of nondeterminism

● favoring single-threaded mode in program execution

○ avoids a system call failing because a previous one that it depends on hasn’t executed yet

○ e.g. calling write before calling open on a file descriptor

● rerun programs that returned mismatches

○ eliminates flaky mismatches caused by

■ the current state of the system

■ background activity

● ensure initial state for each executed program is identical

○ avoids false positives occuring because of accumulated hidden state

Next Potential Steps

● research and eliminate other sources of false positives

● automatic bisection

● extending the return state of each system call to include information about

○ memory

○ registers

○ contents of disk

○ privileges assigned to system call

● comparing Linux with other kernels (e.g. *BSD, gVisor) on a subset of syscalls

● creating a model of the Linux kernel to compare against

Summary

● differential fuzzing automates the process of finding semantic bugs

● syz-verifier is a differential fuzzing prototype for the Linux kernel

● repository and documentation: https://github.com/google/syzkaller/blob/master/docs/syz_verifier.md

https://github.com/google/syzkaller/blob/master/docs/syz_verifier.md

