

Compiler Features
for Kernel Security

Kees Cook <keescook@chromium.org>
Qing Zhao <qing.zhao@oracle.com>

https://outflux.net/slides/2021/lpc/compiler-security-features.pdf

mailto:keescook@chromium.org
mailto:qing.zhao@oracle.com
https://outflux.net/slides/2021/lpc/compiler-security-features.pdf

 2/25

skipping various common features

● stack canaries: -fstack-protector -fstack-protector-strong
● uninitialized variable analysis: -Wuninitialized -Wmaybe-uninitialized
● format string safety analysis: -Wformat -Wformat-security
● Position Independent Executable to use ASLR: -Wl,-z,pie -fPIE
● Variable Length Array analysis: -Wvla
● Spectre v2:

– GCC: -mindirect-branch -mfunction-return
– Clang: -mretpoline

 3/25

GCC Clang

stack protector guard location arm64 riscv arm32 arm64 riscv arm32

zero call-used registers proposed no

stack variable auto-initialization plugin yes

array bounds checking

signed overflow protection conflicts with other options conflicts with other options

unsigned overflow protection no conflicts with other options

Link Time Optimization yes yes

forward edge CFI hardware only yes

backward edge CFI hardware only hardware w/ arm64 soft

lvalue introspection builtin

structure layout randomization plugin no

Spectre v1 mitigation no yes

flashback! 2020’s features needing attention

 4/25

features needing attention
GCC Clang

stack protector guard location arm64 riscv arm32 arm64 riscv arm32

zero call-used registers yes no

stack variable auto-initialization yes yes

array bounds checking yes yes

signed overflow protection conflicts with other options conflicts with other options

unsigned overflow protection no conflicts with other options

Link Time Optimization yes yes

forward edge CFI hardware only yes

backward edge CFI hardware only hardware w/ arm64 soft

lvalue introspection builtin no no

structure layout randomization plugin no

Spectre v1 mitigation no yes

 5/25

stack protector guard location
● GCC: supported on arm64 & riscv, needed on arm32
● Clang: supported on arm64, needed on riscv & arm32

-mstack-protector-guard=sysreg

-mstack-protector-guard-reg=sp_el0

-mstack-protector-guard-offset=0

● Provides per-thread stack canaries in the kernel (otherwise the canary is a per-boot
global value for all threads)

● (x86 & powerpc are already supported via its existing Thread Local Storage
implementation)

● Canary value is leaky :(See https://github.com/KSPP/linux/issues/29

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102352
https://bugs.llvm.org/show_bug.cgi?id=47341
https://github.com/KSPP/linux/issues/29

 6/25

zero call-used regs on func return
● GCC: since version 11

-fzero-call-used-regs=[skip|used-gpr|all-gpr|used|all]

(open issues: possible arm32 ICE and a request to always use XOR)
● Clang: needed

● Supported in the kernel since v5.15 as CONFIG_ZERO_CALL_USED_REGS (only using used-gpr)

● Virtually no performance impact (register self-xor is highly pipelined), and strongly frustrates
ROP gadget utility. Also makes sure those register contents cannot be used for speculation-style
attacks.

● https://github.com/KSPP/linux/issues/84

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100775
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101891
https://bugs.llvm.org/show_bug.cgi?id=37880
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/security/Kconfig.hardening?id=a82adfd5c7cb4b8bb37ef439aed954f9972bb618
https://www.semanticscholar.org/paper/Clean-the-Scratch-Registers%3A-A-Way-to-Mitigate-Rong-Xie/6f2ce4fd31baa0f6c02f9eb5c57b90d39fe5fa13
https://github.com/KSPP/linux/issues/84

 7/25

stack variable auto-initialization
● GCC: added in version 12
● Clang: supported

-ftrivial-auto-var-init=zero

-ftrivial-auto-var-init=pattern

● Not intended to remove -Wuninitialized coverage.

● Linus wants to be able to depend on zeroing in the kernel.
● The zeroing mode is enabled by default in Android, Chrome OS, and XNU via

Clang, and the Windows kernel via VC++’s similar option.

https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=a25e0b5e6ac8a77a71c229e0a7b744603365b0e9
https://lore.kernel.org/lkml/CAHk-=wgTM+cN7zyUZacGQDv3DuuoA4LORNPWgb1Y_Z1p4iedNQ@mail.gmail.com/
https://lists.llvm.org/pipermail/cfe-dev/2020-April/065221.html

 8/25

array bounds checking: goals
● Kernel has been converting all legacy 0-element and 1-

element arrays to flexible arrays to gain sane bounds
checking:
– Keep 0-element arrays out of the kernel source (except in legacy

UAPI headers)
– Warn about overlapping 0-element arrays (to make sure no bad

UAPI use creeps in):
– Never access beyond array size ...

● warn if size and index are known at compile-time
● freak out if run-time index is larger than size

 9/25

array bounds checking
(no 0-element arrays)

● Keep 0-element arrays out of the kernel source:
struct legacy {

 unsigned long flags;

 size_t count;

 int elements[0]; /* <- change to “int elements[];” */

};

– Clang has -Wzero-length-array (except that UAPI must keep them forever)

– GCC feature has been requested
– Both need a struct attribute to ignore certain structures declarations (UAPI will have

0-element arrays for a long time)

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94428

 10/25

array bounds checking
(warn on overlap)

● Warn about using 0-element arrays when they overlap with other members (i.e. make sure no
bad UAPI use continues)

struct legacy {
 unsigned long flags;
 union {
 int weird[0];
 struct stuff not_weird;
 }
} instance;
...
instance.weird[0] = something;

– GCC: -Wzero-length-bounds
– Clang should likely gain this coverage

 11/25

array bounds checking
(check for index overflow ...)

● Never index beyond array size
– No current way in C to deal with flexible arrays, but some great proposals for language

extensions:
struct variable_size {
 size_t count;
 ...
 int elements[.count];
};

– For everything else, coverage is possible now when the array size is known at compile time:
struct something instance[8]; /* size is 8: indexes can be 0 to 7. */

● When index is known at compile time, warn: -Warray-bounds
instance[12] = ... /* build warning */

● When index is only known at run-time, perform check at run-time: -fsanitize=bounds
instance[index] = ... /* run-time freak out when index < 0 or index > 7 */

 12/25

array bounds checking
... at compile time

● GCC and Clang: -Warray-bounds (with caveats noted below)
struct something {
 ...
 int elements[1];
} instance, *ptr;

– Clang pretends 0-element and 1-element arrays are flexible arrays, and does not enforce checks
on such members:

instance.elements[3] = ...; /* no warning! :(*/
ptr->elements[3] = ...; /* no warning! :(*/

– GCC pretends dereferences to 0/1-element arrays are flexible arrays and does not enforce checks:
instance.elements[3] = ...; /* warning :) */
ptr->elements[3] = ...; /* no warning! :(*/

● worse: __builtin_object_size() thinks all trailing arrays have unknown size, breaking FORTIFY_SOURCE
depending on struct layout!

– Both compilers need an option for “no legacy flexible array handling”

https://godbolt.org/z/bh1vvs7jY
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836

 13/25

array bounds checking
... at run time

● GCC and Clang: -fsanitize=bounds (with similar caveats)

– Clang has more knobs: -fsanitize=bounds contains two options:

-fsanitize=array-bounds

-fsanitize=local-bounds (but is only trapping?!)

– But, of course, both pretend 0/1-element arrays are flexible arrays
● GCC can disable this with -fsanitize=bounds-strict
● Clang needs this (or perhaps just the new option proposed on prior slide)

– How should the kernel freak out on run-time bounds failure?
● Warn (doesn’t stop the overflow)
● Trap (i.e. BUG(), denial of service)
● Exception handling (needs to be done manually in C)

 14/25

bonus: __builtin_dynamic_object_size
● FORTIFY_SOURCE is implemented mainly through the use of __builtin_object_size (with the various

bugs above), but lacks any visibility into run-time sizes (usually via alloc_size function attribute).

● Expand coverage to run time with __builtin_dynamic_object_size
– Clang: implemented
– GCC: discussed

thing->obj = kmalloc(alloc_size, GFP_KERNEL);
...
if (write_size > __builtin_dynamic_object_size(thing->obj, 1)) {
 /* freak out */
}

● Yes, yes, “why not check alloc_size?”, but this is desired for use in helpers that only have visibility into
thing and write_size but not alloc_size (think memcpy(), and similarly expanded FORTIFY_SOURCE
coverage).

https://developers.redhat.com/blog/2021/04/16/broadening-compiler-checks-for-buffer-overflows-in-_fortify_source
https://clang.llvm.org/docs/LanguageExtensions.html#evaluating-object-size-dynamically
https://gcc.gnu.org/legacy-ml/gcc/2019-01/msg00210.html

 15/25

signed overflow protection
● GCC and Clang: technically working ...

-fsanitize=signed-integer-overflow

● There are, however, some significant behavioral caveats related to -fwrapv
and -fwrapv-pointer (which are enabled by -fno-strict-overflow)

– “It’s not an undefined behavior to wrap around.”
● Like run-time bounds checking, arithmetic overflow can be handled as a

Trap, or “Warn and continue with wrapped value”
– It would be nice to have a “warn and continue with saturated value” mode instead,

to reduce the chance of denial of service and reach normal error checking.

https://github.com/KSPP/linux/issues/26

 16/25

unsigned overflow detection
● GCC: needed
● Clang: working, with similar problems as in prior slide ...

-fsanitize=unsigned-integer-overflow

● This one isn’t technically “undefined behavior”, but it certainly leads to
exploitable (or at least unexpected) conditions.

● Similar issues as signed overflow:
– behavioral caveats related to -fno-strict-overflow
– would be nice to have a “warn and continue with saturated value” mode

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96829

 17/25

Link Time Optimization
● GCC: -flto
● Clang: -flto or -flto=thin

● Required for software-based forward edge Control Flow Integrity.
● Works with the kernel, but only with Clang.

– Most recent GCC LTO series hasn’t been sent to LKML in a long time, but
continues to be worked on by Andi Kleen:

https://github.com/andikleen/linux-misc/commits/lto-5.13-1-wip

https://github.com/andikleen/linux-misc/commits/lto-5.13-1-wip

 18/25

CFI (forward edge: indirect calls)
● hardware (coarse-grain: entry points)

– x86: ENDBR instruction
● GCC and Clang: -fcf-protection=branch

– arm64: BTI instruction
● GCC and Clang:

-mbranch-protection=bti
__attribute__((target(“branch-protection=bti”)))

● software (fine-grain: per-function-prototype)
– GCC: needed (though there is -fvtable-verify=[std|preinit|none] for C++)

– Clang: -fsanitize=cfi
● We really need fine-grain forward edge CFI: stops automated gadget exploitation

– https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei

https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei

 19/25

CFI (backward edge: returns)
● hardware

– x86: CET CPU feature bit and implicit operation: no compiler support needed!
– arm64: PAC instructions, supported by both GCC and Clang:

-mbranch-protection=pac-ret[+leaf]

__attribute__((target(“branch-protection=pac-ret[+leaf]”)))

● software shadow stack
– x86: none (Want CET! Please, test the series and review it. Linux is behind)
– arm64:

● GCC: needed
● Clang: -fsanitize=shadow-call-stack

https://lore.kernel.org/lkml/20210830182221.3535-1-yu-cheng.yu@intel.com/

 20/25

lvalue introspection builtin
● GCC and Clang: not implemented
● Needed to build a type-aware allocator drop-in replacement to minimize the impact of type-

confused use-after-free flaws. Unlikely to convince folks to rewrite the existing idiom from:

instance = kmalloc(size, GFP_KERNEL);
into:

kmalloc(instance, size, GFP_KERNEL);

● If size is sizeof(*instance), allocation can live in typeof(*instance) bucket

● otherwise, it’s a flexible array: allocation can live in “flexible typeof(*instance)” bucket

● kmalloc() macro side of assignment has no visibility into the type of instance. :(

● Perhaps something like __builtin_lvalue() that resolves to the lvalue,

or __builtin_lvalue_type()?

 21/25

structure layout randomization
__attribute__((randomize_layout))

● GCC: kernel plugin
● Clang: proposed but stalled needing work

● Fun for really paranoid builds
● Most users of the features are highly interested in build diversity
● Used by at least one phone vendor

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gcc-plugins/randomize_layout_plugin.c
https://reviews.llvm.org/D59254

 22/25

Spectre v1 mitigation
● GCC: wanted? no open bug...
● Clang:

-mspeculative-load-hardening

__attribute__((speculative_load_hardening))
https://llvm.org/docs/SpeculativeLoadHardening.html

● Performance impact is relatively high, but lower than using lfence everywhere.

● Really needs some kind of “reachability” logic to reduce overhead.

https://llvm.org/docs/SpeculativeLoadHardening.html

 23/25

What’s next for GCC
● known issues for -fzero-call-used-regs

– Always use XOR (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101891)

– ICE with -mthumb (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100775)

● known issues for -ftrivial-auto-var-init
– Missing -Wuninitialized warning for address taken variables

– Spurious warning (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102276)

– ICEs

 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=102285

 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102281

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101891
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100775
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102276
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=102285
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102281

 24/25

What’s next for GCC
● New tasks:

– Adjust signed integer overflow detector to work with -fwrapv
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102317

– Provide an option to turn off the GCC heuristic “all trailing arrays
are flexible array”:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836

– Unsigned overflow detection;

(-fsanitize=unsigned-integer-overflow)

– What else?

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102317
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836

Thank you; stay safe!
Thoughts? Questions?

https://outflux.net/slides/2021/lpc/compiler-security-features.pdf

Kees (“Case”) Cook
keescook@chromium.org

@kees_cook

Qing Zhao
qing.zhao@oracle.com

https://outflux.net/slides/2021/lpc/compiler-security-features.pdf
mailto:keescook@chromium.org
https://twitter.com/kees_cook
mailto:qing.zhao@oracle.com

