
Eliminating implicit function declarations

Florian Weimer
GNU Tools @ LPC, 2021-09-23

Abstract

What should we do about GCC’s support for implicit
function declarations? There were removed in C99, but
GCC has yet to make the transition.



What are implicit function declarations?

main ()
{
printf (”Hello, %s!\n”, getenv (”USER”));
exit (0);

}



What are implicit function declarations?
implicit.c:1:1: warning: return type defaults to ‘int’ [-Wimplicit-int]

1 | main ()
| ^~~~

implicit.c: In function ‘main’:
implicit.c:3:3: warning: implicit declaration of function ‘printf’ [-Wimplicit-function-
declaration]

3 | printf (”Hello, %s!\n”, getenv (”USER”));
| ^~~~~~

implicit.c:3:3: warning: incompatible implicit declaration of built-in function ‘printf’
implicit.c:1:1: note: include ‘<stdio.h>’ or provide a declaration of ‘printf’
+++ |+#include <stdio.h>
1 | main ()

implicit.c:3:27: warning: implicit declaration of function ‘getenv’ [-Wimplicit-function-
declaration]

3 | printf (”Hello, %s!\n”, getenv (”USER”));
| ^~~~~~

implicit.c:4:3: warning: implicit declaration of function ‘exit’ [-Wimplicit-function-
declaration]

4 | exit (0);
| ^~~~

implicit.c:4:3: warning: incompatible implicit declaration of built-in function ‘exit’
implicit.c:1:1: note: include ‘<stdlib.h>’ or provide a declaration of ‘exit’
+++ |+#include <stdlib.h>
1 | main ()

No compiler error!
Program links and runs1.

1On 32-bit platforms only.



Implicit function declarations on 64-bit
architectures

No prototype, and the return type is int:
extern int getenv ();

The x86-64 ABI requires that the upper 32 bits are zeroed
when converted back to a pointer.
On x86-64, _Bool-returning functions are peculiar.
Weird corruptions are the result.



Implicit function declarations and shared
objects

binutils BFD ld defaults to -z nodefs with -shared.
Undefined symbols are reported only (much) later.

When linking the shared object into a program (default:
-z defs).
At run time, when loading (if linked with -z now).
At run time, when invoked (if linked with -z lazy).

A typo on an error path might never be diagnosed properly
due to lazy binding.



GCC’s implicit function declarations are
surprising to developers

OpenSSL developers say this about implicit function
declarations:
We didn’t anticipate a compiler with implicit declara-
tions and lazy runtime binding. Given this is an unlikely
setup, [. . .]
https://github.com/openssl/openssl/issues/16254#issuecomment-894624215

This results in silent miscompilation of the .Net Core
run-time library during an OpenSSL 3.0 porting effort.

https://github.com/openssl/openssl/issues/16254#issuecomment-894624215


Just turn on more warnings as errors?

It should be really easy to switch on
-Werror=implicit-function-declarations.
But only for new programs.

For example, libstdc++ lost futex support on Linux if built
without implicit function declarations.
bash, gawk, gettext, gnulib, make, Perl, PHP, rsync,
unzip, . . .

If configure test fail, test suites bits are automatically
disabled as well.
Enabling this at the distribution level is hard.



GCC autoconf fragment

AC_LINK_IFELSE(
[AC_LANG_PROGRAM(
[#include <sys/syscall.h>
int lk;],
[syscall (SYS_gettid);
syscall (SYS_futex, &lk, 0, 0, 0);
])],
. . .

#include <unistd.h> is missing for the syscall function.



Detecting packages that rely on implicit
function declarations

First attempt: config.log/config.h diffing
Build each package twice, with and without errors.
See if configure detects things differently.
Does not work with all crufty build systems.

New idea: Patch GCC to write an error report file into a
magic directory.

Fail the entire package build at the end if the directory is
not empty.



Errors for implicit function declarations: Are
they worth the effort?

Sharing patches across distributions is not easy.
This issue disproportionately affects old code with weird
build systems and dormant upstreams.
It’s mostly boring work, ideal for gloomy November days.
Apple’s Xcode recently made the transition.
I think: The improvement in developer experience is real and
worth the effort.

Realistic target: GCC 13?



Thanks for listening.

Questions? Comments?


