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AMD Open Source Debugging Tools Project

• AMD ROCm ROCgdb debugger

• https://github.com/ROCm-Developer-Tools/ROCgdb

• DWARF Extensions For Heterogeneous Debugging

• https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html

• User Guide for AMDGPU Backend: DWARF Debug Information

• https://llvm.org/docs/AMDGPUUsage.html#dwarf-debug-information

https://github.com/ROCm-Developer-Tools/ROCgdb
https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html
https://llvm.org/docs/AMDGPUUsage.html#dwarf-debug-information
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Heterogeneous Computing Debugging Challenges

• GPUs and other heterogeneous computing devices have:

• Multiple memory address spaces

• Many wide vector registers

• Many scalar registers

• Language threads of execution => lanes of a SIMD/SIMT execution model

…VGPR 0

…VGPR 1

…VGPR 255

…

Variable 

X

Single Source 

Language Thread

SIMD/SIMT Execution Model

Lane 0 Lane 1 Lane 3Lane 2 Lane 4 Lane 5 Lane 63

Example: GPU Hardware
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Heterogeneous Computing Debugging Challenges (cont.)

• Variables more often spread across pieces of different storage kinds

• SIMD/SIMT execution needs runtime selection of pieces of vector registers

• Complex expressions benefit from factorization of location definitions

• Currently not possible => duplicate parts of location definitions
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Existing DWARF 5 Limitations

• Unable to describe variables in combinations of parts of registers => no static or runtime indexing

• Some features only work when located in memory => type attribute expressions requiring a base object

• DWARF procedures can only accept global memory address arguments

• No vector base types needed to describe vector registers

• Cannot create memory locations in address spaces

• CFI does not allow composite locations

• CFI does not support address spaces

• Bit field offsets are not supported for all location kinds
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How to fix this?

• Explored numerous approaches to overcome limitations

• Approach chosen was simplest and provided most benefits

• Based on:

• Generalizing execution model

• Composable and consistent operations

• Results in small number of new operations that compose generally

• As opposed to adding many specialized operations and rules

• Causes contextual semantics and corner cases

• Harder for compilers and debuggers

• Major aspect is to allow locations to be manipulated on the stack
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Main Goals

• Upstreamable:

• GDB debugger

• LLVM compiler 

• GCC compiler

• Supportable by other tools:

• TotalView debugger

• Backwards compatible with DWARF 5

• Support optimized code for GPUs

• Benefit non-GPU targets too
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What Is DWARF?

• A standard way to specify debug information

• Describes source language entities: compilation units, functions, types, variables, etc.

• Embedded in sections of code object executables

• Maps source program language entities to the hardware representation:

• Program counter <=> source line

• Source function => entry point program counter

• Source language variable => location at a particular program counter

• Source function call stack virtual unwinding => locations of callee saved registers

• Etc.
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DWARF Expressions

• Great diversity in locations of entities

• Locations involve runtime values

• Variable location could be:

• In register

• At memory address

• At Stack Pointer + offset

• Optimized away known value => such as compile time value

• Optimized away unknown value => such as unused variables

• Spread across combination of locations

• At memory address, but also transiently loaded into registers

• Consequently, DWARF includes rich expression language

• Expression evaluated on simple stack machine

• Expression evaluated in a context => value/location result kind, process/thread/lane/frame/pc, initial stack, etc.

• Some context defined by place expression used => result kind, initial stack, etc.
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Example: Runtime size of a dynamic array

• Context result kind => value

• Expression evaluated one operation at a time using a stack

DWARF 5: Dynamic Array Size (1 of 3)

Source Program

Hardware

SGPR 0

Array

Size

0
x
0
a
3
c
0
f0

0

… …Memory

42

42
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• DW_OP_regvalue_type => reads register and pushes value on 

stack

• Each stack element is a value and associated type

• Type must be a DWARF base type => specifies encoding, byte 

ordering, and size of value

• Defaults to Generic type => architecture specific integral encoding/byte 

ordering, the size of global memory address

DWARF 5: Dynamic Array Size (2 of 3)

Source Program

Hardware

SGPR 0

Array

Size

0
x
0
a
3
c
0
f0

0

… …Memory

42

42
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• Value result kind => result is the top stack value

DWARF 5: Dynamic Array Size (3 of 3)

Source Program

Hardware

SGPR 0

Array

Size

0
x
0
a
3
c
0
f0

0

… …Memory

42

42
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Example: Source variable located in a register

• Context result kind => location

• Note: DWARF uses term location description

DWARF 5: Variable Location in Register (1 of 2)

Source Program

Hardware

SGPR 0

Variable
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• DW_OP_regx => creates register location

• DWARF conceptually has a separate location area

• Does not use the stack

• Location result kind => result is the location area

DWARF 5: Variable Location in Register (2 of 2)

Source Program

Hardware

SGPR 0

Variable
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Example: Source variable in stack frame memory at address 

stack pointer + 0x10

DWARF 5: Variable Location in Memory (1 of 4)

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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• DW_OP_regvalue_type => pushes value read from stack pointer 

register

DWARF 5: Variable Location Memory (2 of 4)

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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• Variable location is 0x10 bytes from the base of the stack frame

• DW_OP_plus_uconst => pop value, add 0x10, and push result

DWARF 5: Variable Location Memory (3 of 4)

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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• Location area empty when location result kind => convert top stack 

element to memory location

• Use value as global memory address

DWARF 5: Variable Location Memory (4 of 4)

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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Example: Source variable that is partly in a register, partly 

undefined, and partly in memory

• Composite location => 1 or more parts

• Each part specifies a location and number of bytes used from it

DWARF 5: Variable Spread Across Different Locations (1 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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• DW_OP_regx => creates register location

DWARF 5: Variable Spread Across Different Locations (2 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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• DW_OP_piece => first use creates incomplete composite location

• Location in location area used in first part

• Size 4 indicates number of bytes used from beginning of part’s location

DWARF 5: Variable Spread Across Different Locations (3 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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• DW_OP_piece => subsequent  use adds part to already created 
incomplete composite location
• Parts form a contiguous set of bytes

• If no other location in location area, and no value on stack => 
part implicitly the undefined location

• 2 indicates there are 2 undefined bytes

• Undefined location => 
used to indicate part that has been optimized away

DWARF 5: Variable Spread Across Different Locations (4 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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• DW_OP_bregx => read register as Generic type, add 0x10, and 

push value

DWARF 5: Variable Spread Across Different Locations (5 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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• DW_OP_piece => add part to already created incomplete 

composite location

• If no other location in location area, but value on stack => 

part is memory location with address popped from stack

• 2 indicates there are 2 bytes from memory

DWARF 5: Variable Spread Across Different Locations (6 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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• Incomplete composite location implicitly converted to complete 

composite location

DWARF 5: Variable Spread Across Different Locations (7 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory
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Example: Offsetting a composite location not supported

• Extend previous example to offset location built so far

• Variable Location in Memory example used DW_OP_plus => convenient way to offset memory address

DWARF 5: Offsetting a Composite Location (1 of 2)
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• However, DW_OP_plus cannot be used to offset a composite location => it only operates on the stack

• Compiler would need to make a different composite location => starting at the part corresponding to offset

DW_OP_piece 1

DW_OP_bregx SGPR0 0x10

DW_OP_piece 2

• Operations on values are not composable with locations

DWARF 5: Offsetting a Composite Location (2 of 2)
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What Is A Location?

• Location storage is contiguous linear organization of certain number of bytes

• All location kinds can be viewed the same way:

• Global memory => linear stream of bytes of the architecture’s address size

• Register => linear stream of bytes of the size of each architecture’s register

• Composite location => linear stream of the bytes defined by the parts

• Implicit location => linear stream of bytes of the value using the type’s byte ordering

• Undefined location => infinitely sized storage where every byte is undefined

• A location is comprised of:

• A kind (memory, register, etc.)

• A reference to a specific location storage of that kind

• A zero-based offset within the location storage
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Stack Location Operations

• If location could be allowed on the stack:

• Define new operations to work on locations in compossible manner

• Example: new DW_OP_LLVM_offset => updates offset of any location kind

• Existing operations can be generalized => act on locations of any kind

• Example: DW_OP_deref => pop a location (rather than memory address value), read it

• Backwards compatibility via implicit conversions

• Key part of extension is allowing locations on stack

• DWARF 5 expressions can be evaluated unchanged and yield same results

• Extension allows greater expressiveness => see following examples
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Example: Compiler spills variable stored in SGPR register to fixed 

lane of VGPR register

• In this case lane 5 of VGPR0 => each VGPR lane is 4 bytes

• So index is 5 * 4 = 20

Extension: Variable spilled to part of VGPR  (1 of 3)

Source Program

Hardware

SGPR 0

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…
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• DW_OP_regx => now pushes location on stack with byte offset of 0

Extension: Variable spilled to part of VGPR  (2 of 3)

Source Program

Hardware

SGPR 0

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…
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• DW_OP_LLVM_offset => can offset register location

• DWARF 5 does not support specifying register offset => can only have locations starting at beginning

• Defining register names for every part of every register => not practical for GPUs due to sheer number

• Separate register names would not allow computed runtime indexing 

of register parts

• GPU compilers frequently locate variable in parts of the numerous 

wide vector registers

• Especially in optimized code to avoid memory accesses

• Runtime indices used to support SIMT execution model

• Result is top stack entry

Extension: Variable spilled to part of VGPR  (3 of 3)

Source Program

Hardware

SGPR 0

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

New
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Example: Source variable located across a SIMT lane of multiple 
VGPR registers

• GPU compiler maps language threads to VGPR lanes in SIMT 
manner

• Thread’s variable is spread across the same lane of multiple VGPRs

• Context specifies lane => lane corresponds to focused source thread

Extension: Variable across multiple VGPRs (1 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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Extension: Variable across multiple VGPRs (2 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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• DW_OP_LLVM_push_lane => pushes value of context’s lane

Extension: Variable across multiple VGPRs (3 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

New
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• Each VGPR lane is 4 bytes => lane must be multiplied by 4 to get 

register byte index

Extension: Variable across multiple VGPRs (4 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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Extension: Variable across multiple VGPRs (5 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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Extension: Variable across multiple VGPRs (6 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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• DW_OP_piece => now pops location from stack to use for the new part

• For backwards compatibility: if stack is empty or the top element is an incomplete 

composite location, implicitly uses the undefined location; if top element is a 

Generic value, it is implicitly converted to 

a global memory location

Extension: Variable across multiple VGPRs (7 of 14)

• Checks if the top stack element is an incomplete composite location

• If not, creates new incomplete composite location with no parts

• Otherwise, pops previously created incomplete composite location

• Adds new part to incomplete composite location and pushes on stack

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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Extension: Variable across multiple VGPRs (8 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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Extension: Variable across multiple VGPRs (9 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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Extension: Variable across multiple VGPRs (10 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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Extension: Variable across multiple VGPRs (11 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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Extension: Variable across multiple VGPRs (12 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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• DW_OP_piece => pops location and adds as new part to incomplete 

composite location on top of stack

Extension: Variable across multiple VGPRs (13 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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• If top of stack is incomplete composite location => 

implicitly converted to complete composite location

Extension: Variable across multiple VGPRs (14 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane
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Example: Source variable located across register, memory, and 

implicit locations

• Same as previous example, except last 4 bytes are from memory and 

a constant value

Extension: Variable across multiple kinds of locations (1 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d
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• DW_OP_addr => now pushes a memory location

Extension: Variable across multiple kinds of locations (2 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d
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• DW_OP_piece => adds memory location as next piece of composite 

location

Extension: Variable across multiple kinds of locations (3 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d
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• Last 2 bytes are constant value 0xf00d

Extension: Variable across multiple kinds of locations (4 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d
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• DW_OP_stack_value =>

• Pops value

• Creates implicit location storage using value’s base type size and byte order

• Pushes implicit location referencing implicit location storage

Extension: Variable across multiple kinds of locations (5 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d
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• DW_OP_piece => adds implicit location as next piece of composite 

location

Extension: Variable across multiple kinds of locations (6 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d
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• DW_OP_LLVM_piece_end => explicitly completes incomplete 
composite location on top of stack
• Permits location operations to be used => such as DW_OP_LLVM_offset

• Permits creation of multiple composite locations on stack => 
used to pass to DW_OP_call*

Extension: Variable across multiple kinds of locations (7 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d

New
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Example: Source variable in stack frame address space memory 

at address stack pointer + 0x10

• Devices can have multiple hardware supported address spaces

• Specific hardware instructions to access address spaces

• DWARF 5 DW_OP_xderef => dereferences a memory address 

using an address space

• No way to create address in a specific address space

• No way to include address space memory locations in parts of 

composite locations

Extension: Address Spaces (1 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory
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• GPUs use separate address space for per lane managed storage 

=> used by stack pointer

• DW_OP_regval_type => push stack pointer address

Extension: Address Spaces (2 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory
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• DW_OP_uconst => push address space number

• Architecture defines numbers => address space 1 is per lane memory

Extension: Address Spaces (3 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory
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• DW_OP_LLVM_form_aspace_address => pops value and 
address space number, and pushes memory location which 
includes the address space
• Each address space is a separate memory location storage

• All operations on locations work with memory locations regardless of 
address space

• Every architecture defines address space 0 => default global memory 
address space

• Generalization avoids creating specialized operations to work with 
address spaces

Extension: Address Spaces (4 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory

New



58 |

• The source variable is at byte 0x10 in the frame

• DW_OP_LLVM_offset => works the same with memory locations 

that have an address space

Extension: Address Spaces (5 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory
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Example: Variable in bit field of a register

• Locations specify an offset within associated location storage => extension allows bit offsets

• DWARF 5 does not support general bit offset => only supports bit fields in composites with DW_OP_bit_piece

• DWARF 5 only supports locations that start at the beginning of a register

• Supporting bit offsets benefits all targets

Extension: Bit Offsets (1 of 4)

Source Program

Hardware

SGPR 3

Variable

20 bits
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Extension: Bit Offsets (2 of 4)

Source Program

Hardware

SGPR 3

Variable

20 bits
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• DW_OP_uconst => push bit offset on stack

• This could also be a runtime calculation

Extension: Bit Offsets (3 of 4)

Source Program

Hardware

SGPR 3

Variable

20 bits
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• DW_OP_LLVM_bit_offset => pop value and location, update 

location’s offset using value as a bit offset, push updated location

• Bit ordering, like byte ordering, is architecture specific

• Base type’s ordering can specify both byte and bit ordering

• Works on any location kind

• Locations with bit offsets allowed in composite location parts just 

like any other location

Extension: Bit Offsets (4 of 4)

Source Program

Hardware

SGPR 3

Variable

20 bits

New
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Other benefits of generalizing locations on the stack

• DWARF 5 only supports memory locations on the stack => uses global memory address:

• DW_AT_data_member_location => evaluates expression with type instance object address as initial stack value

• DW_OP_push_object_address => pushes location of context’s program object defined by the attribute

• DW_OP_call* operations => values can be passed in/out to called DWARF procedure on stack

• Generalization allows any location kind

• Necessary to support optimized code on GPUs => compiler allocates objects in registers, different address spaces, 

and composites of them

• Allows bit fields and implicit locations to be supported => can occur through optimization on any target

• GPU compiler uses DWARF procedures to factorize location expressions => 

SIMT divergent control flow information

• Reduces DWARF size

• More convenient to generate
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Call Frame Information (CFI)

• DWARF defines call frame information (CFI) => used to virtually unwind call stack

• Extended CFI rules to support:

• All location kinds

• Address spaces

• GPU only saves active lanes of VGPR callee saved registers

• DW_OP_LLVM_select_bit_piece => used by unwind expressions to inspect the bits in EXEC register

• DW_OP_LLVM_call_frame_entry_reg => used to get EXEC register value on entry to function
New
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Multiple Places

• DWARF 5 supports loclists => can specify a location is in multiple places at same time

• DW_OP_call* and DW_OP_implicit_pointer => can specify DIE that has a loclist

• Location extended to allow one or more single locations

• Location operations extended to act on multiple places

• DW_OP_LLVM_offset => adjusts offset of all the single locations

• DWARF 5 defines operation expressions and loclist expressions separately

• Works in DWARF 5 as locations can only be the last step of an expression

• Extension generalizations made unification fall out naturally =>

unification necessary as locations now allowed at any step of an expression
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Extension Operation Summary

Core Extensions

• Expression operations:
• DW_OP_LLVM_form_aspace_address

• DW_OP_LLVM_push_lane

• DW_OP_LLVM_offset

• DW_OP_LLVM_offset_uconst

• DW_OP_LLVM_bit_offset

• DW_OP_LLVM_call_frame_entry_reg

• DW_OP_LLVM_undefined

• DW_OP_LLVM_aspace_bregx

• DW_OP_LLVM_aspace_implicit_pointer

• DW_OP_LLVM_piece_end

• DW_OP_LLVM_extend

• DW_OP_LLVM_select_bit_piece

• CFI operations:
• DW_CFA_LLVM_def_aspace_cfa

• DW_CFA_LLVM_def_aspace_cfa_sf

• DIE Attributes:
• DW_AT_LLVM_vector_size

Divergent Lane Support Extensions

• DIE Attributes:
• DW_AT_LLVM_active_lane

• DW_AT_LLVM_lanes

• DW_AT_LLVM_lane_pc
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Current Progress

• Ongoing development:

• AMD ROCm ROCgdb debugger

https://github.com/ROCm-Developer-Tools/ROCgdb

• In development:

• AMD ROCm LLVM compiler

• Perforce TotalView debugger

• Mentor Graphics GCC compiler

• Further Information:

• DWARF Extensions For Heterogeneous Debugging

https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html

• User Guide for AMDGPU Backend: DWARF Debug Information

https://llvm.org/docs/AMDGPUUsage.html#dwarf-debug-information

https://github.com/ROCm-Developer-Tools/ROCgdb
https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html
https://llvm.org/docs/AMDGPUUsage.html#dwarf-debug-information
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Summary

• DWARF expressions are generalized to allow locations on the stack

• New operators that are composable, consistent, and backward compatible

• Provides support needed by GPUs and other heterogeneous devices

• Improves debugging of optimized code for both CPUs and GPUs
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