
DWARF Extensions for Optimized SIMT/SIMD

(GPU) Debugging
GNU Tools Cauldron @ Linux Plumbers Conference 2021

Tony Tye, Scott Linder, Zoran Zaric

2 |

AMD Open Source Debugging Tools Project

• AMD ROCm ROCgdb debugger

• https://github.com/ROCm-Developer-Tools/ROCgdb

• DWARF Extensions For Heterogeneous Debugging

• https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html

• User Guide for AMDGPU Backend: DWARF Debug Information

• https://llvm.org/docs/AMDGPUUsage.html#dwarf-debug-information

https://github.com/ROCm-Developer-Tools/ROCgdb
https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html
https://llvm.org/docs/AMDGPUUsage.html#dwarf-debug-information

3 |

Heterogeneous Computing Debugging Challenges

• GPUs and other heterogeneous computing devices have:

• Multiple memory address spaces

• Many wide vector registers

• Many scalar registers

• Language threads of execution => lanes of a SIMD/SIMT execution model

…VGPR 0

…VGPR 1

…VGPR 255

…

Variable

X

Single Source

Language Thread

SIMD/SIMT Execution Model

Lane 0 Lane 1 Lane 3Lane 2 Lane 4 Lane 5 Lane 63

Example: GPU Hardware

4 |

Heterogeneous Computing Debugging Challenges (cont.)

• Variables more often spread across pieces of different storage kinds

• SIMD/SIMT execution needs runtime selection of pieces of vector registers

• Complex expressions benefit from factorization of location definitions

• Currently not possible => duplicate parts of location definitions

5 |

Existing DWARF 5 Limitations

• Unable to describe variables in combinations of parts of registers => no static or runtime indexing

• Some features only work when located in memory => type attribute expressions requiring a base object

• DWARF procedures can only accept global memory address arguments

• No vector base types needed to describe vector registers

• Cannot create memory locations in address spaces

• CFI does not allow composite locations

• CFI does not support address spaces

• Bit field offsets are not supported for all location kinds

6 |

How to fix this?

• Explored numerous approaches to overcome limitations

• Approach chosen was simplest and provided most benefits

• Based on:

• Generalizing execution model

• Composable and consistent operations

• Results in small number of new operations that compose generally

• As opposed to adding many specialized operations and rules

• Causes contextual semantics and corner cases

• Harder for compilers and debuggers

• Major aspect is to allow locations to be manipulated on the stack

7 |

Main Goals

• Upstreamable:

• GDB debugger

• LLVM compiler

• GCC compiler

• Supportable by other tools:

• TotalView debugger

• Backwards compatible with DWARF 5

• Support optimized code for GPUs

• Benefit non-GPU targets too

8 |

What Is DWARF?

• A standard way to specify debug information

• Describes source language entities: compilation units, functions, types, variables, etc.

• Embedded in sections of code object executables

• Maps source program language entities to the hardware representation:

• Program counter <=> source line

• Source function => entry point program counter

• Source language variable => location at a particular program counter

• Source function call stack virtual unwinding => locations of callee saved registers

• Etc.

9 |

DWARF Expressions

• Great diversity in locations of entities

• Locations involve runtime values

• Variable location could be:

• In register

• At memory address

• At Stack Pointer + offset

• Optimized away known value => such as compile time value

• Optimized away unknown value => such as unused variables

• Spread across combination of locations

• At memory address, but also transiently loaded into registers

• Consequently, DWARF includes rich expression language

• Expression evaluated on simple stack machine

• Expression evaluated in a context => value/location result kind, process/thread/lane/frame/pc, initial stack, etc.

• Some context defined by place expression used => result kind, initial stack, etc.

10 |

Example: Runtime size of a dynamic array

• Context result kind => value

• Expression evaluated one operation at a time using a stack

DWARF 5: Dynamic Array Size (1 of 3)

Source Program

Hardware

SGPR 0

Array

Size

0
x
0
a
3
c
0
f0

0

… …Memory

42

42

11 |

• DW_OP_regvalue_type => reads register and pushes value on

stack

• Each stack element is a value and associated type

• Type must be a DWARF base type => specifies encoding, byte

ordering, and size of value

• Defaults to Generic type => architecture specific integral encoding/byte

ordering, the size of global memory address

DWARF 5: Dynamic Array Size (2 of 3)

Source Program

Hardware

SGPR 0

Array

Size

0
x
0
a
3
c
0
f0

0

… …Memory

42

42

12 |

• Value result kind => result is the top stack value

DWARF 5: Dynamic Array Size (3 of 3)

Source Program

Hardware

SGPR 0

Array

Size

0
x
0
a
3
c
0
f0

0

… …Memory

42

42

13 |

Example: Source variable located in a register

• Context result kind => location

• Note: DWARF uses term location description

DWARF 5: Variable Location in Register (1 of 2)

Source Program

Hardware

SGPR 0

Variable

14 |

• DW_OP_regx => creates register location

• DWARF conceptually has a separate location area

• Does not use the stack

• Location result kind => result is the location area

DWARF 5: Variable Location in Register (2 of 2)

Source Program

Hardware

SGPR 0

Variable

15 |

Example: Source variable in stack frame memory at address

stack pointer + 0x10

DWARF 5: Variable Location in Memory (1 of 4)

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

16 |

• DW_OP_regvalue_type => pushes value read from stack pointer

register

DWARF 5: Variable Location Memory (2 of 4)

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

17 |

• Variable location is 0x10 bytes from the base of the stack frame

• DW_OP_plus_uconst => pop value, add 0x10, and push result

DWARF 5: Variable Location Memory (3 of 4)

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

18 |

• Location area empty when location result kind => convert top stack

element to memory location

• Use value as global memory address

DWARF 5: Variable Location Memory (4 of 4)

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

19 |

Example: Source variable that is partly in a register, partly

undefined, and partly in memory

• Composite location => 1 or more parts

• Each part specifies a location and number of bytes used from it

DWARF 5: Variable Spread Across Different Locations (1 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

20 |

• DW_OP_regx => creates register location

DWARF 5: Variable Spread Across Different Locations (2 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

21 |

• DW_OP_piece => first use creates incomplete composite location

• Location in location area used in first part

• Size 4 indicates number of bytes used from beginning of part’s location

DWARF 5: Variable Spread Across Different Locations (3 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

22 |

• DW_OP_piece => subsequent use adds part to already created
incomplete composite location
• Parts form a contiguous set of bytes

• If no other location in location area, and no value on stack =>
part implicitly the undefined location

• 2 indicates there are 2 undefined bytes

• Undefined location =>
used to indicate part that has been optimized away

DWARF 5: Variable Spread Across Different Locations (4 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

23 |

• DW_OP_bregx => read register as Generic type, add 0x10, and

push value

DWARF 5: Variable Spread Across Different Locations (5 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

24 |

• DW_OP_piece => add part to already created incomplete

composite location

• If no other location in location area, but value on stack =>

part is memory location with address popped from stack

• 2 indicates there are 2 bytes from memory

DWARF 5: Variable Spread Across Different Locations (6 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

25 |

• Incomplete composite location implicitly converted to complete

composite location

DWARF 5: Variable Spread Across Different Locations (7 of 7)

Source Program

Hardware

SGPR 0

Variable

SGPR 3

undef

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Memory

26 |

Example: Offsetting a composite location not supported

• Extend previous example to offset location built so far

• Variable Location in Memory example used DW_OP_plus => convenient way to offset memory address

DWARF 5: Offsetting a Composite Location (1 of 2)

27 |

• However, DW_OP_plus cannot be used to offset a composite location => it only operates on the stack

• Compiler would need to make a different composite location => starting at the part corresponding to offset

DW_OP_piece 1

DW_OP_bregx SGPR0 0x10

DW_OP_piece 2

• Operations on values are not composable with locations

DWARF 5: Offsetting a Composite Location (2 of 2)

28 |

What Is A Location?

• Location storage is contiguous linear organization of certain number of bytes

• All location kinds can be viewed the same way:

• Global memory => linear stream of bytes of the architecture’s address size

• Register => linear stream of bytes of the size of each architecture’s register

• Composite location => linear stream of the bytes defined by the parts

• Implicit location => linear stream of bytes of the value using the type’s byte ordering

• Undefined location => infinitely sized storage where every byte is undefined

• A location is comprised of:

• A kind (memory, register, etc.)

• A reference to a specific location storage of that kind

• A zero-based offset within the location storage

29 |

Stack Location Operations

• If location could be allowed on the stack:

• Define new operations to work on locations in compossible manner

• Example: new DW_OP_LLVM_offset => updates offset of any location kind

• Existing operations can be generalized => act on locations of any kind

• Example: DW_OP_deref => pop a location (rather than memory address value), read it

• Backwards compatibility via implicit conversions

• Key part of extension is allowing locations on stack

• DWARF 5 expressions can be evaluated unchanged and yield same results

• Extension allows greater expressiveness => see following examples

30 |

Example: Compiler spills variable stored in SGPR register to fixed

lane of VGPR register

• In this case lane 5 of VGPR0 => each VGPR lane is 4 bytes

• So index is 5 * 4 = 20

Extension: Variable spilled to part of VGPR (1 of 3)

Source Program

Hardware

SGPR 0

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

31 |

• DW_OP_regx => now pushes location on stack with byte offset of 0

Extension: Variable spilled to part of VGPR (2 of 3)

Source Program

Hardware

SGPR 0

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

32 |

• DW_OP_LLVM_offset => can offset register location

• DWARF 5 does not support specifying register offset => can only have locations starting at beginning

• Defining register names for every part of every register => not practical for GPUs due to sheer number

• Separate register names would not allow computed runtime indexing

of register parts

• GPU compilers frequently locate variable in parts of the numerous

wide vector registers

• Especially in optimized code to avoid memory accesses

• Runtime indices used to support SIMT execution model

• Result is top stack entry

Extension: Variable spilled to part of VGPR (3 of 3)

Source Program

Hardware

SGPR 0

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

New

33 |

Example: Source variable located across a SIMT lane of multiple
VGPR registers

• GPU compiler maps language threads to VGPR lanes in SIMT
manner

• Thread’s variable is spread across the same lane of multiple VGPRs

• Context specifies lane => lane corresponds to focused source thread

Extension: Variable across multiple VGPRs (1 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

34 |

Extension: Variable across multiple VGPRs (2 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

35 |

• DW_OP_LLVM_push_lane => pushes value of context’s lane

Extension: Variable across multiple VGPRs (3 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

New

36 |

• Each VGPR lane is 4 bytes => lane must be multiplied by 4 to get

register byte index

Extension: Variable across multiple VGPRs (4 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

37 |

Extension: Variable across multiple VGPRs (5 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

38 |

Extension: Variable across multiple VGPRs (6 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

39 |

• DW_OP_piece => now pops location from stack to use for the new part

• For backwards compatibility: if stack is empty or the top element is an incomplete

composite location, implicitly uses the undefined location; if top element is a

Generic value, it is implicitly converted to

a global memory location

Extension: Variable across multiple VGPRs (7 of 14)

• Checks if the top stack element is an incomplete composite location

• If not, creates new incomplete composite location with no parts

• Otherwise, pops previously created incomplete composite location

• Adds new part to incomplete composite location and pushes on stack

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

40 |

Extension: Variable across multiple VGPRs (8 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

41 |

Extension: Variable across multiple VGPRs (9 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

42 |

Extension: Variable across multiple VGPRs (10 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

43 |

Extension: Variable across multiple VGPRs (11 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

44 |

Extension: Variable across multiple VGPRs (12 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

45 |

• DW_OP_piece => pops location and adds as new part to incomplete

composite location on top of stack

Extension: Variable across multiple VGPRs (13 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

46 |

• If top of stack is incomplete composite location =>

implicitly converted to complete composite location

Extension: Variable across multiple VGPRs (14 of 14)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

VGPR 1 …

Focused Thread

Focused Lane

47 |

Example: Source variable located across register, memory, and

implicit locations

• Same as previous example, except last 4 bytes are from memory and

a constant value

Extension: Variable across multiple kinds of locations (1 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d

48 |

• DW_OP_addr => now pushes a memory location

Extension: Variable across multiple kinds of locations (2 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d

49 |

• DW_OP_piece => adds memory location as next piece of composite

location

Extension: Variable across multiple kinds of locations (3 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d

50 |

• Last 2 bytes are constant value 0xf00d

Extension: Variable across multiple kinds of locations (4 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d

51 |

• DW_OP_stack_value =>

• Pops value

• Creates implicit location storage using value’s base type size and byte order

• Pushes implicit location referencing implicit location storage

Extension: Variable across multiple kinds of locations (5 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d

52 |

• DW_OP_piece => adds implicit location as next piece of composite

location

Extension: Variable across multiple kinds of locations (6 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d

53 |

• DW_OP_LLVM_piece_end => explicitly completes incomplete
composite location on top of stack
• Permits location operations to be used => such as DW_OP_LLVM_offset

• Permits creation of multiple composite locations on stack =>
used to pass to DW_OP_call*

Extension: Variable across multiple kinds of locations (7 of 7)

Source Program

Hardware

Variable

Lane 0

VGPR 0

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 63

…

Focused Thread

Focused Lane

0
x
b
e
e
f

… …Memory

0xf00d

New

54 |

Example: Source variable in stack frame address space memory

at address stack pointer + 0x10

• Devices can have multiple hardware supported address spaces

• Specific hardware instructions to access address spaces

• DWARF 5 DW_OP_xderef => dereferences a memory address

using an address space

• No way to create address in a specific address space

• No way to include address space memory locations in parts of

composite locations

Extension: Address Spaces (1 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory

55 |

• GPUs use separate address space for per lane managed storage

=> used by stack pointer

• DW_OP_regval_type => push stack pointer address

Extension: Address Spaces (2 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory

56 |

• DW_OP_uconst => push address space number

• Architecture defines numbers => address space 1 is per lane memory

Extension: Address Spaces (3 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory

57 |

• DW_OP_LLVM_form_aspace_address => pops value and
address space number, and pushes memory location which
includes the address space
• Each address space is a separate memory location storage

• All operations on locations work with memory locations regardless of
address space

• Every architecture defines address space 0 => default global memory
address space

• Generalization avoids creating specialized operations to work with
address spaces

Extension: Address Spaces (4 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory

New

58 |

• The source variable is at byte 0x10 in the frame

• DW_OP_LLVM_offset => works the same with memory locations

that have an address space

Extension: Address Spaces (5 of 5)

… …Global Memory

Source Program

Hardware

SGPR 0

Variable

0
x
0
a
3
c
0
f0

0

…

0
x
0
a
3
c
0
f1

0

… …

Stack Frame

…

0x10

Per Lane Memory

59 |

Example: Variable in bit field of a register

• Locations specify an offset within associated location storage => extension allows bit offsets

• DWARF 5 does not support general bit offset => only supports bit fields in composites with DW_OP_bit_piece

• DWARF 5 only supports locations that start at the beginning of a register

• Supporting bit offsets benefits all targets

Extension: Bit Offsets (1 of 4)

Source Program

Hardware

SGPR 3

Variable

20 bits

60 |

Extension: Bit Offsets (2 of 4)

Source Program

Hardware

SGPR 3

Variable

20 bits

61 |

• DW_OP_uconst => push bit offset on stack

• This could also be a runtime calculation

Extension: Bit Offsets (3 of 4)

Source Program

Hardware

SGPR 3

Variable

20 bits

62 |

• DW_OP_LLVM_bit_offset => pop value and location, update

location’s offset using value as a bit offset, push updated location

• Bit ordering, like byte ordering, is architecture specific

• Base type’s ordering can specify both byte and bit ordering

• Works on any location kind

• Locations with bit offsets allowed in composite location parts just

like any other location

Extension: Bit Offsets (4 of 4)

Source Program

Hardware

SGPR 3

Variable

20 bits

New

63 |

Other benefits of generalizing locations on the stack

• DWARF 5 only supports memory locations on the stack => uses global memory address:

• DW_AT_data_member_location => evaluates expression with type instance object address as initial stack value

• DW_OP_push_object_address => pushes location of context’s program object defined by the attribute

• DW_OP_call* operations => values can be passed in/out to called DWARF procedure on stack

• Generalization allows any location kind

• Necessary to support optimized code on GPUs => compiler allocates objects in registers, different address spaces,

and composites of them

• Allows bit fields and implicit locations to be supported => can occur through optimization on any target

• GPU compiler uses DWARF procedures to factorize location expressions =>

SIMT divergent control flow information

• Reduces DWARF size

• More convenient to generate

64 |

Call Frame Information (CFI)

• DWARF defines call frame information (CFI) => used to virtually unwind call stack

• Extended CFI rules to support:

• All location kinds

• Address spaces

• GPU only saves active lanes of VGPR callee saved registers

• DW_OP_LLVM_select_bit_piece => used by unwind expressions to inspect the bits in EXEC register

• DW_OP_LLVM_call_frame_entry_reg => used to get EXEC register value on entry to function
New

65 |

Multiple Places

• DWARF 5 supports loclists => can specify a location is in multiple places at same time

• DW_OP_call* and DW_OP_implicit_pointer => can specify DIE that has a loclist

• Location extended to allow one or more single locations

• Location operations extended to act on multiple places

• DW_OP_LLVM_offset => adjusts offset of all the single locations

• DWARF 5 defines operation expressions and loclist expressions separately

• Works in DWARF 5 as locations can only be the last step of an expression

• Extension generalizations made unification fall out naturally =>

unification necessary as locations now allowed at any step of an expression

66 |

Extension Operation Summary

Core Extensions

• Expression operations:
• DW_OP_LLVM_form_aspace_address

• DW_OP_LLVM_push_lane

• DW_OP_LLVM_offset

• DW_OP_LLVM_offset_uconst

• DW_OP_LLVM_bit_offset

• DW_OP_LLVM_call_frame_entry_reg

• DW_OP_LLVM_undefined

• DW_OP_LLVM_aspace_bregx

• DW_OP_LLVM_aspace_implicit_pointer

• DW_OP_LLVM_piece_end

• DW_OP_LLVM_extend

• DW_OP_LLVM_select_bit_piece

• CFI operations:
• DW_CFA_LLVM_def_aspace_cfa

• DW_CFA_LLVM_def_aspace_cfa_sf

• DIE Attributes:
• DW_AT_LLVM_vector_size

Divergent Lane Support Extensions

• DIE Attributes:
• DW_AT_LLVM_active_lane

• DW_AT_LLVM_lanes

• DW_AT_LLVM_lane_pc

67 |

Current Progress

• Ongoing development:

• AMD ROCm ROCgdb debugger

https://github.com/ROCm-Developer-Tools/ROCgdb

• In development:

• AMD ROCm LLVM compiler

• Perforce TotalView debugger

• Mentor Graphics GCC compiler

• Further Information:

• DWARF Extensions For Heterogeneous Debugging

https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html

• User Guide for AMDGPU Backend: DWARF Debug Information

https://llvm.org/docs/AMDGPUUsage.html#dwarf-debug-information

https://github.com/ROCm-Developer-Tools/ROCgdb
https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html
https://llvm.org/docs/AMDGPUUsage.html#dwarf-debug-information

68 |

Acknowledgements

• Would like to thank the following for collaboration, feedback and support:

• AMD ROCm Debugger Team: Tony Tye, Laurent Morichetti, Zoran Zaric

• AMD ROCm Compiler Team: Scott Linder, Konstantin Zhuravlyov, Ram Nalamothu, Brian Sumner

• ARM: Louise Spellecy, Richard Brunt, Dirk Schubert

• GDB Maintainers: Pedro Alves, Simon Marchi

• HPE: Andrew Gontarek, Deepak Eachempati, John Vogt, Jeff Sandoval

• Intel: Markus Metzer

• Lawrence Livermore National Laboratory: Dong Ahn

• Mentor Graphics: Andrew Stubbs

• Oak Ridge National Laboratory

• Perforce: John DelSignore, Steve Lawrence

69 |

Summary

• DWARF expressions are generalized to allow locations on the stack

• New operators that are composable, consistent, and backward compatible

• Provides support needed by GPUs and other heterogeneous devices

• Improves debugging of optimized code for both CPUs and GPUs

70 |

DISCLAIMER AND ATTRIBUTIONS

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information

contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard

version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any

computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this

information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person

of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO

RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON

FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,

EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

©2021 Advanced Micro Devices, Inc. All rights reserved.

AMD®, the AMD Arrow logo, AMD Instinct®, Radeon®, ROCm®, and combinations thereof are trademarks of Advanced Micro Devices, Inc. ARM® is a registered trademark of

ARM Limited in the EU and other countries. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

71

