
  

Optimize for Multi-core or Single core?
By Patrick McGehearty



  

Modern chips with multiple cores often share cache across cores.
Examples:

Intel – Ice Lake Xeon Platinum 8380 (40 cores, 80 threads)
60MB L3 Cache shared by all threads (0.75MB/thread)

AMD – EPYC 7702P (64 cores, 128 threads)
256MB L3 cache per chip, 16MB/CCX or 2MB per thread

It is common for server class chips with many processors to
share L3 cache across some or all processors.

Modern Cache Sharing



  

“Non-temporal” store: Hint to HW – data to be stored is not
expected to be read again soon. Also called “streaming” stores.
HW may choose to bypass cache when a series of stores would
fill a cache line.

Benefits: Avoids pushing more useful data out of cache.
May reduce memory traffic (cache line need not be fetched).

Drawbacks: May reduce opportunities for cache reuse when
Very large caches are available.

X86 non-temporal stores



  

Performance Issues 

A optimization patch to glibc memcpy was tuned to provide maximum 
improvement for single thread performance on an eight core system by 
increasing the threshold for non-temporal stores.

It was later observed that the new threshold prevented the use of non-
temporal stores in the highly parallel Stream benchmark, causing a 20% 
performance regression when run on a 128 core system.

In other studies, large copies clearing shared cache can cost 20% 
performance in pointer-chasing applications (i.e. linked-list management)

Reduction is performance is most likely when system is at highest load.



  

Decision: per core sharing

Old threshold: 6 * 1 core's share of L3 cache
  (based on early 8 cores/chip assumptions)

Changed threshold: 3/4 total L3 cache
  (based on tuning for single core)

New threshold: 3/4 * 1 core's share of L3 cache
  (based on tuning for all cores active)

Current glibc Philosophy:
  Activity on one thread should not cause significant negative effects 
  on other threads.


