
Limitations of Tuning glibc malloc
By Patrick McGehearty

2

malloc/free is widely used directly in C and by runtime
Systems in many other languages

glibc's malloc should give competitive performance.
 Reduces desire to use alternatives such as jemalloc or TCMalloc.

Easier to support standard malloc than many alternatives.
 Knowledge of tunable benefits can help

Malloc usage

3

Different usage patterns will favor different strategies.

Some applications malloc/free many small chunks.

Some applications allocate large chunks for long durations.

sbrk and mmap have different benefits and limitations.

No single best solution.

Optimizing malloc

4

sbrk() vs mmap()

sbrk() obtains additional memory by expanding application data segment.
 Storage is only returned to the system when a contiguous segment of
 sufficient size is available at the end of the data segment. This
 approach can lead to memory fragmentation but typically will mean
 less system overhead from allocation of pages.

mmap() obtains sufficient additional pages independently mapped for the
 current allocation request. When the corresponding free() occurs all
 the pages are immediately returned to the operating system. The
 advantage is much less wasted memory but the disadvantage is
 much higher system overhead as the pages are zero'ed between each
 free() and malloc()

5

 Measuring malloc performance

Current presentation will use:
 Single measurement tool to show potential benefits of tuning

Remember: your application will be different.

libMicro benchmark set includes tests for malloc performance.
 The tests have many options.
 Tests used here will allocate 16 identical blocks of memory
 and then free them.
 The block size will be varied from 16 Kbytes up to 32 Mbytes.

6

 malloc Tunables
MALLOC_MMAP_MAX_ (set to 0 to disable mmap)
 default= 64K active mmap allocations

MALLOC_MMAP_THRESHOLD_ (sets limit for mmap)
 minimum 128K, maximum 32MB (dynamically adjusts)

MALLOC_TRIM_THRESHOLD_ (set to -1 to disable trimming)
 default = 128K
 malloc returns unused sbrk()/heap memory when end of heap on free list is
 greater than the trim threshold

Default values shown are for 64 bit environments.

In later slides, we'll use short names for environment variables:
MMAP == MALLOC_MMAP_THRESHOLD_
TRIM == MALLOC_TRIM_THRESHOLD_

7

 Increase MMAP=32M

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M
0

1

2

3

4

5

6

7

8

malloc performance

Default

MMAP=32M

malloc block size

M
ic

ro
se

co
n

d
s

/ m
a

llo
c

Lower lines are faster.

8

 Set MMAP and TRIM to 32M

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M
0

1

2

3

4

5

6

7

8

malloc performance

Default

MMAP=32M

MMAP&TRIM=32M

malloc block size

M
ic

ro
se

co
n

d
s

/ m
a

llo
c

Lower lines are faster.

9

 MMAP=32M, Disable TRIM

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M
0

1

2

3

4

5

6

7

8

malloc performance

Default

MMAP=32M

MMAP&TRIM=32M

MMAP=32M,TRIM=-1

malloc block size

M
ic

ro
se

co
n

d
s

/ m
a

llo
c

Lower lines are faster.

10

 Disable MMAP and TRIM

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M
0

1

2

3

4

5

6

7

8

malloc performance

Default

MMAP=32M

MMAP&TRIM=32M

MMAP=32M,TRIM=-1

disable MMAP/TRIM

malloc block size

M
ic

ro
se

co
n

d
s

/ m
a

llo
c

Lower lines are faster.

11

 Review Findings/Discussion

Appropriate setting of MALLOC_MMAP_MAX_,
 MALLOC_MMAP_THRESHOLD_,
 MALLOC_TRIM_THRESHOLD_
 to match application needs can substantially improve malloc performance.

Current limit of maximum allowed MALLOC_MMAP_THRESHOLD_
was set in 2006. Much too small for some applications today.

Investigating revised maximum with minimal effects on apps using defaults.

