
1

 Indu Bhagat indu.bhagat@oracle.com

 David Faust david.faust@oracle.com

 Wei-min Pan weimin.pan@oracle.com

CTF and BTF debug formats in the GNU Toolchain:
status update and what’s next

mailto:indu.bhagat@oracle.com
mailto:david.faust@oracle.com
mailto:weimin.pan@oracle.com

2

Agenda

● Introduction: CTF/BTF debug formats
● Updates since GNU Tools track 2020
● CTF/BTF debug info generation in GCC
● What's next

3

● Two distinct debug formats to convey type information
– Compact C Type Format (CTF) describes C types (mid 2000s)

● Solaris Kernel → Linux
● Current version = V3

– BPF Type Format (BTF) is inspired by Solaris CTF. With a focus
on BPF programs/kernel (first LLVM/kernel patches circa 2018)

● Current version = V1

● Remarkable similarities owing to a common ancestor

– But they are binary incompatible, distinct formats

CTF/BTF Debug Formats

4

Distinct formats with independent evolution history and use-cases

CTF/BTF Debug Formats

Most recent
additions

CTF_K_SLICES for
representing bitfields

BTF_KIND_FLOAT for fp types
BTF_KIND_TAG for attributes

Support for
multiple CUs

CTF has representation
of parent-child
dictionaries (archives)

BTF does not have such a
representation

library support libctf (binutils >=2.36) for
ld, gdb

[No linker support]
libbpf (kernel) does BPF program
loading, performs relocations, ...

Miscellaneous No src location
information

BTF/CO-RE (.BTF.ext), src location
information, relocations, ...

5

Updates since GNU Tools track 2020

● CTF and BTF debug formats are now fully supported
– GCC: -gctf, -gbtf generates the .ctf/.BTF section

– Binutils ld, objdump: --ctf=.ctf
● CTF Type de-duplication contributed in 2020.

– GDB: Support for CTF Archives

● CTF Spec and mailing lists @ ctfstd.org
● Is it ready for uptake?

– Yes! Please try it out and report issues on bugzilla or mailing lists

6

Implementation Notes

7

Implementation in GCC

debug_hooks

(dbx_debug_hooks)
dbxout.c

(xcoff_debug_hooks)
xcoffout.c

(vms_debug_hooks)
vmsdbgout.c

(dwarf2_debug_hooks)
dwarf2out.c

CTF

BTF

DWARF

CTF Container
via

dwarf2ctf

8

CTF/BTF debug info
generation in GCC

GCC Internal DWARF → Internal CTF
(dwarf2ctf.h / dwarf2ctf.c)

DWARF generation and emission
 (dwarf2out.h / dwarf2out.c)

dwarf2out_early_finish () dwarf2out_finish ()

ctf_debug_init ()

ctf_debug_do_die ()
ctf_debug_preprocess ()

ctf_debug_early_finish ()

ctf_debug_finish ()

CTF Container
(ctfc.h / ctfc.c)

GCC internal Type
debug format
representation

CTF context

CTF Emission
(ctfout.c)

BTF Emission
(btfout.c)

ctf_add_function ()
ctf_add_array ()
ctf_add_sou () btf_init_preprocess ()

btf_output ()

ctf_init_preprocess ()
ctf_output ()

9

BTF support in GCC

● BTF generation for any target via -gbtf
– No debug levels are necessary

● For BTF generation and emission, the CTF container is:
– Post-processed after initialization

● BTF encodes bitfields differently
● Unrepresented types are removed

– Pre-processed before emission
● Add BTF_KIND_FUNC and BTF_KIND_DATASEC records

● For BPF backend, -gbtf generates BTF/CO-RE

10

CTF Support in GDB

● Implements a CTF reader, using libctf, to read and set CTF data

– Skips reading CTF data if DWARF debugging info exists

● Enables GDB commands such as ptype, print, and whatis to
support CTF types

● Supports single compilation unit and CTF Archives

● Next task:

– Support for CTF V4 (backtraces and other CTF format changes)

11

What's Next

12

Next Steps

● Continue to support CTF/BTF in GNU Toolchain

● Towards CTF V4

– Inviting community discussion and participation on the public
mailing list at ctfstd.org

13

Future CTF Work (GCC)

● Testing of interaction between debug flags which affect the generation of
DWARF DIEs and -gctf / -gbtf
– [debug_info_level] -gLEVEL OR -gtoggle

– */ CTF/BTF generation feeds off DWARF dies. For optimal CTF/BTF, switch
debug info level to 2. If off or at level 1, set it to level 2, but if already at level
3, don't lower it. */

– Need to differentiate between user-specified debug info level
(output/emission) vs internal GCC debug info level (debug info generation)

-g0 -gctf -gtoggle 0 → 2 → 0 emits no DWARF, emits no CTF

-gctf -g0 -gtoggle 2 → 0 → 2 emits DWARF, emits CTF

14

Future CTF work (GCC)

● Modularize / Refactor dwarf2out.c / dwarf2out.h

– Usage: DWARF die creation, add and get attribute APIs

– Functionality: Split off a dwarf2cfi.h
● Prepare for CTF V4

– Make the CTF Container (CTFC) version aware

– Command line options -gctf-version=<NUMBER> to chose CTF version

15

● Generate Backtraces with the following requirements:
– Exact at each instruction boundary
– With original value of the arguments at the point of function

call
– Keep it simple and compact. No complex expression

encoding, no location lists, no stack machine

CTF version 4 – Backtraces
Requirements

16

CTF version 4 – Backtraces
Callsite information

● Each ABI defines the parameter passing rules
– #1: Assign storage class to the argument

● High-level language type → machine type

– #2: Assign reg/stack location to each argument, given
its machine type

● Proposal
– Debug format specifies #1

– Backtrace client does #2

17

CTF version 4 – Backtraces

● The natural location of the argument is not encoded explicitly
in the format. It is inferred from position and class of the
argument and the ABI (by the client)
– [AMD64] INTEGER / SSE / SSEUP / X87 / X87UP / … /

MEMORY

– [AARCH64] INTEGER / SIMD / FP / SCALABLE VECTOR /
SCALABLE PREDICATE/ MEMORY

18

CTF version 4 – Backtraces
Few examples

Examples for argument passing Representation [AMD64]

// all integers
func1 (int a, int b, int c, int d, int e, int f);

a in RDI, b in RSI, c in RDX, d in RCX, e in R8, f in R9
Storage class = I I I I I I
implicit loc info = [REG REG REG REG REG REG]

// small aggregates
typdef struct structparm {
 int a, b; double d; } structparm;
func2 (int a, structparm s);

a in RDI, s.a and s.b in RSI, s.d in XMM0
Storage class = I 2 { I NO_CLASS FP }
Implicit loc info = [REG 2 { REG - REG }]

// large aggregates
typedef struct { float lg1[10]; }
structlarge;
func7 (__int128 a, structlarge b);

// large is defined as any composite struct with more
than 8 eightbytes in size.
a in RDI+RSI, b on stack
Storage class = 2 {I I} 10 { MEM }
Implicit loc info = [2 { REG REG } 10 { MEM }]

19

● [Phase 1] Get the original value of the argument from its
natural location if it has not been clobbered

● Two sections with relevant information
– .ctf section will contain the Callsite and Callsite parameter

records
– A new section (.ctf_frame) will contain the unwinding info

● [Callsite Index] Given a PC, get ref to the CTF callsite record
● [CFA Index] Given a PC, get the CFA

CTF version 4 – Backtraces
[Phase 1]

20

● ...cont'd
● Each object file contains a .ctf and .ctf_frame section which the

linker will merge/de-dup if necessary
● The client needs an ABI specific method of deciphering the

exact register/stack location of the argument given its storage
class

CTF version 4 – Backtraces
[Phase 1]

21

 Thanks!

 Visit: ctfstd.org
Email:
nick.alcock@oracle.com (Binutils, CTF)
indu.bhagat@oracle.com (GCC, CTF/BTF)
david.faust@oracle.com (GCC, BPF, BTF/CO-RE)
jose.marchesi@oracle.com (GCC, BPF, CTF/BTF, GNU Poke)
weimin.pan@oracle.com (GDB, CTF)

mailto:nick.alcock@oracle.com
mailto:indu.bhagat@oracle.com
mailto:david.faust@oracle.com
mailto:jose.marchesi@oracle.com
mailto:weimin.pan@oracle.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

