
Security Improvements in GCC

Qing Zhao (qing.zhao@oracle.com)
Compilers and Toolchain Team
Oracle Linux Engineering and Virtualization

1

Agenda

● the security wishlist and the two new features to GCC.
● “call-used registers wiping on return” in GCC11.
● “stack variables auto-initialization” in GCC12.
● Future work.

2

The Security Wishlist for GCC
gcc clang

Speculative load hardening no yes

call-used registers wiping on return yes (gcc11) yes

stack variable auto-initialization yes (gcc12) yes

structure layout randomization plugin in linux kernel no

signed overflow protection yes, usability issues Yes, usability issues

unsigned overflow protection no Yes, usability issues

backward edge CFI hardware only hardware w/ arm64 soft

forward edge CFI hardware only Yes

ref to https://outflux.net/slides/2020/lpc/gcc-and-clang-security-feature-parity.pdf 3

https://outflux.net/slides/2020/lpc/gcc-and-clang-security-feature-parity.pdf

Call-used Registers Wiping
outline

● Motivation
● Important questions and answers
● New feature added to GCC11
● Status of the patch
● A summary of the implementation
● Acknowledgment

4

Call-used Registers Wiping
Motivation

● Two major purposes:
– Mitigating ROP (Return-oriented programming)
– Preventing Information leakage through registers

5

Features of ROP
● One of the most popular code reuse attack techniques.

● Execute gadget chains to perform malicious tasks.

● Each gadget typically ends in a return instruction,and located in a subroutine within the existing program.

● The destination of using gadget chains usually call system functions to perform malicious behavior.

● The registers usually are used to pass parameters for these system functions.

Therefore, cleaning the scratch registers that are used to pass parameters at return
instructions should effectively mitigate ROP attack.

Call-used Registers Wiping
Motivation (Mitigating ROP)

(Ref to Clean the Scratch Registers:A Way to Mitigate Return-Oriented Programming Attacks)
 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors 6

https://ieeexplore.ieee.org/document/8445132)
https://ieeexplore.ieee.org/xpl/conhome/8424123/proceeding

– One of the well known security techniques is stack and
register erasure. Ensuring that on return from a function,
no data is left on the stack or in registers.

– There is a separate patch addressing the stack erasure
problem

– “call-used registers wiping on return” can address the
register erasure problem at the same time.

Call-used Registers Wiping
Motivation (preventing information leakage)

7

Call-used Registers Wiping
 Important Questions

● Q1: Which registers should be cleaned at the return of the function?

Answer: the caller-saved, i.e, call-used, or call-clobbered registers.

 For ROP mitigation purpose, only the call-used registers that pass parameters need to be
cleaned.

 For register erasure purpose, all the call-used registers need to be cleaned.

we should provide multiple levels of control for users for different purposes and control the
runtime overhead as much as possible.

8

● Q2: Why zeroing the registers other than randomizing them?

Answer:

1) Zero _tends_ to be the safest choice as it's less "useful" to be used as a size, index, or pointer.

2) Generated code for zeroes is faster and smaller than that for other non-zero constants.

Call-used Registers Wiping
 Important Questions

9

Call-used Registers Wiping
 New Features added to GCC11

● Add a command-line option:
-fzero-call-used-regs=[skip|used-gpr-arg|used-arg|all-gpr-arg |all-arg|used-gpr|all-gpr|used|all]

● Add a function attribute:
zero_call_used_regs("skip|used-gpr-arg|used-arg|all-gpr-arg |all-arg|used-gpr|all-gpr|used|all")

skip: none
used: only used
all: all

gpr: general-purpose registers
arg: registers that can pass parameters

Multiple-level control 10

Call-used Registers Wiping
 Status of the Patch

● Committed into GCC11 on Oct. 2020.

● X86 and aarch64 were fully supported, an optimized implementation for X86 was
provided.

● SPARC was supported later by defining the target
hook TARGET_ZERO_CALL_USED_REGS on Dec. 2020.

● The Linux kernel is being configured to use this feature to improve kernel's security
on July 2021.

11

https://gcc.gnu.org/pipermail/gcc-cvs/2020-October/336263.html
https://gcc.gnu.org/pipermail/gcc-cvs/2020-December/338342.html
https://lkml.org/lkml/2021/7/14/1431

Call-used Registers Wiping
 Summary of the Patch

● Add a new pass in the beginning of "late_compilation", called "pass_zero_call_used_regs".

● In this new pass "pass_zero_call_used_regs":

 scan the exit block from backward to look for "return":

1) for each return, compute the "need_zeroed_hardregs" based on the user request, the data
flow information, and function ABI information.

2) pass this "need_zeroed_hardregs" to the target hook "zero_call_used_regs" to generate the
instruction sequence that zero the registers.

● The default implementation for the new target hook "zero_call_used_regs" will generate
a sequence without any target-specific optimizations.

● X86 backend has an optimized implementation. 12

Call-used Registers Wiping
 Aknowlegement

● H.J.LU: for the initial X86 implementation and bug fixes;

● Richard Sandiford: lots of help during design phase and middle-end implementation;

● Segher Boessenkool: provided many helpful insight during design phase;

● Uros Bizjak: helped and reviewed on X86 implementation;

● Eric Botcazou: made it work on SPARC;

● Kees Cook: supported from Linux Kernel side;

● And all others who provided helpful insight during the discussion and code review….

13

Stack Variables Auto-initialization
outline

● Motivation
● New feature added to GCC12
● Status of the patch
● A summary of the implementation
● Acknowledgment

14

Stack Variables Auto-initialization
Motivation (1)

● Impact of uninitialized stack variables
– Incorrect computations;

– Change the program behavior unpredictably;

– Enable malicious code execution;

– Cause race condition if a lock variable check passes when it
should not;

– Etc... 15

● Tools that detect uninitialized stack variables:
– Static tools

● Both GCC and CLANG provides -Wuninitialized

● Visual studio provides an analysis plugin
– Dynamic tools

● Both GCC and CLANG provides -fsanitize=address/memory

● Valgrind: https://valgrind.org

Stack Variables Auto-initialization
Motivation (2)

16

https://www.parasoft.com/getting-started-with-the-visual-studio-code-extension-for-c-c-static-analysis/
https://valgrind.org/

● Limitations of the tools:
● static tools:
1) Mostly base on Intra-procedural analysis, assume that the called function initializes every parameter;

2) Inside a function, has several limitations for uninitialized array elements, pointers, etc;

3) Potential infeasible paths due to conditional expressions that cannot be evaluated statically;

static analysis tools have major issue: false positives.

● dynamic tools:
1) False negatives. along with occasional false positives.

2) Runtime overhead, size of logs are also big concerns.

Stack Variables Auto-initialization
Motivation (3)

17

● Both Microsoft compiler and CLANG (APPLE and GOOGLE) support
pattern/zero init already;

http://lists.llvm.org/pipermail/cfe-dev/2020-April/065221.html

https://msrc-blog.microsoft.com/2020/05/13/solving-uninitialized-stack-memory-on-windows/

● pattern-init is used in development build for debugging purpose;

zero-init is used in production build for security purpose.

Stack Variables Auto-initialization
Motivation (4)

18

http://lists.llvm.org/pipermail/cfe-dev/2020-April/065221.html
https://msrc-blog.microsoft.com/2020/05/13/solving-uninitialized-stack-memory-on-windows/

Stack Variables Auto-initialization
New Features added to GCC12

● Add a new GCC option:

-ftrivial-auto-var-init=[uninitialized|pattern|zero], The default is 'uninitialized'.

'uninitialized' doesn't initialize any automatic variables.

'pattern' Initialize with values which will likely transform logic bugs into crashes.

'zero' Initialize with zeroes.

● Add a new attribute for variable:

__attribute__((uninitialized))

the marked variable is uninitialized intentionally for performance purpose.

● Keep the current static warning on uninitialized variables untouched

in order to avoid "forking the language".
 19

Stack Variables Auto-initialization
Status of the patch

●Committed to GCC12 on 9/9/2021.
●Some bugs filed and fixed after the above commit:

–ICE with -ftrivial-auto-var-init=zero and zero size array (PR102269)
–ICE in expand_DEFERRED_INIT, at internal-fn.c:3024 (PR102273)
–ICE in can_native_interpret_type_p at gcc/fold-const.c:8800 (PR102360)

●Some bugs filed and not fixed yet:
–New flag -ftrivial-auto-var-init=zero causes crash in pr82421.c (PR102285)
–-ftrivial-auto-var-init=zero causes ice(PR102281)
–-ftrivial-auto-var-init fails to initialize a variable, causes a spurious warning (PR102276)
–ICE gimplification failed (PR102359)

20

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102269
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102269
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102273
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102273
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102360
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102285
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102285
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102281
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102276
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102359

Stack Variables Auto-initialization
A summary of the patch (1)

● Three Major Requirements:
1) all auto-variables that do not have an initializer should be

initialized by this option, including the structure paddings.

2) keep the current static warnings on uninitialized variables
untouched.

3) minimum run-time overhead.

21

● The key of the design:

Introduce a new internal function .DEFERRED_INIT to
represent the initialization:

● 3 attributes: CONST, LEAF and NOTHROW;
● 3 parameters: SIZE of the DECL, INIT_TYPE, IS_VLA

DEF_INTERNAL_FN (DEFERRED_INIT, ECF_CONST | ECF_LEAF | ECF_NOTHROW, NULL)

DECL = DEFERRED_INIT (SIZE of the DECL, INIT_TYPE, IS_VLA)

Stack Variables Auto-initialization
A summary of the patch (2)

22

● Add internal calls to .DEFFERED_INIT during gimplification;

● Expand the .DEFFERED_INIT calls during expand phase to
real initializations.

● Adjust uninitialized variable analysis with the new defs
of .DEFFERED_INIT to maintain the uninitialized warnings.

● Adjust scalar replacement of aggregates with the new calls
to .DEFFERED_INIT to minimize stack usage.

Stack Variables Auto-initialization
A summary of the patch (3)

23

● Richard Biener: lots of help during design and implementation;

● Richard Sandiford: provided the initial idea of .DEFERRED_INIT
and many help during the implementation;

● Kees cook: supported from linux kernel side;

● Martin Jambor: helped and reviewed on tree-sra.c;

● All others who helped during the long discussion and fixed the
bugs;

Stack Variables Auto-initialization
Acknowledgment

24

Future Works
Call-used Register Wiping

● Two open bugs need to be fixed first

1) (X86) Adjust -fzero-call-used-regs to always use XOR (PR101891)

2) (arm) ICE: in df_exit_block_bitmap_verify, at df-scan.c:4164 with -
mthumb -fzero-call-used-regs=used (PR100775)

● Some potential performance issues might need to be addressed when
needed.

25

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101891
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100775

Future Works
Stack variable auto initialization

● One known issue need to be addressed first:

Missing -Wuninitialized warning for address taken variables

● Bugs need to be fixed;

● Some more potential correctness and performance bugs might need to be
addressed when needed.

26

Thank you!

Q & A
qing.zhao@oracle.com

27

Extra Slides

28

Gimplification:
● For each auto-variable that does not have an explicit initializer,

insert an initializer as:
 X = DEFERRED_INIT (size of X, INIT_TYPE, IS_VLA)

if INIT_TYPE==PATTERN, insert a call to __builtin_clear_padding (&X, 0)
to initialize the paddings to zeros.

● For each auto-variable that has an explicit initializer, insert a call

to __builtin_clear_padding (&X, 0) to initialize the paddings.

Stack Variables Auto-initialization
A summary of the patch (4)

29

● Uninitialized variable analysis:

Treat all defs with call to .DEFERRED_INIT as undefined,
to keep the uninitialized warnings.

● Scalar replacement of aggregates (SRA):

Handle calls to .DEFERRED_INIT specifically as following:
tmp = .DEFERRED_INIT (size of tmp, INIT_TYPE, IS_VLA)
tmp is an aggregate, and this can be split-ted to the individual components as

following:
tmp$0 = .DEFERRED_INIT (size of tmp$0, INIT_TYPE, IS_VLA);
tmp$1 = .DEFERRED_INIT (size of tmp$1, INIT_TYPE, IS_VLA);
tmp$2 = .DEFERRED_INIT (size of tmp$2, INIT_TYPE, IS_VLA);

to reduce the stack usages.

Stack Variables Auto-initialization
A summary of the patch (5)

30

● RTL expanding:

X = DEFERRED_INIT (SIZE of X, INIT_TYPE, IS_VLA);

 Block initialize X with zero/pattern according to its second argument INIT_TYPE:
1) AUTO_INIT_ZERO, use zeroes;
2) AUTO_INIT_PATTERN, use 0xFE byte-repeatable pattern;

 The variable X is initialized including paddings.

 WHY choose 0xFE for pattern initialization:
● It is a non-canonical virtual address on x86_64, and at the high end of the i386 kernel

address space.
● It is a very large float value (-1.694739530317379e+38).
● It is also an unusual number for integers.

Stack Variables Auto-initialization
A summary of the patch (6)

31

Call-used Registers Wiping
 The Complete Discussion History

https://gcc.gnu.org/pipermail/gcc-patches/2020-May/545075.html

https://gcc.gnu.org/pipermail/gcc-patches/2020-July/550018.html

https://gcc.gnu.org/pipermail/gcc-patches/2020-September/553212.html

https://gcc.gnu.org/pipermail/gcc-patches/2020-September/554771.html

https://gcc.gnu.org/pipermail/gcc-patches/2020-September/555119.html

https://gcc.gnu.org/pipermail/gcc-patches/2020-October/555619.html

https://gcc.gnu.org/pipermail/gcc-patches/2020-October/557568.html

32

https://gcc.gnu.org/pipermail/gcc-patches/2020-May/545075.html
https://gcc.gnu.org/pipermail/gcc-patches/2020-July/550018.html
https://gcc.gnu.org/pipermail/gcc-patches/2020-September/553212.html
https://gcc.gnu.org/pipermail/gcc-patches/2020-September/554771.html
https://gcc.gnu.org/pipermail/gcc-patches/2020-September/555119.html
https://gcc.gnu.org/pipermail/gcc-patches/2020-October/555619.html
https://gcc.gnu.org/pipermail/gcc-patches/2020-October/557568.html

Stack Variables Auto-initialization
Complete Discussion History

https://gcc.gnu.org/pipermail/gcc-patches/2021-February/565581.html

https://gcc.gnu.org/pipermail/gcc-patches/2021-March/567262.html

https://gcc.gnu.org/pipermail/gcc-patches/2021-May/570208.html

https://gcc.gnu.org/pipermail/gcc-patches/2021-July/574642.html

https://gcc.gnu.org/pipermail/gcc-patches/2021-July/575977.html

https://gcc.gnu.org/pipermail/gcc-patches/2021-July/576072.html

https://gcc.gnu.org/pipermail/gcc-patches/2021-July/576341.html
https://gcc.gnu.org/pipermail/gcc-patches/2021-August/576994.html

33

https://gcc.gnu.org/pipermail/gcc-patches/2021-July/576341.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

